REMEDIAL INVESTIGATION OF CONTAMINANT MOBILITY AT MAYAL MEAPONS STATION C. (U) ARMY ENGINEER MATERMAYS EXPERIMENT STATION YICKSBURG MS ENVIR. CR LEE ET AL. JUN 88 MES/MP/EL-86-2-APP F/G 24/4 AD-A195 946 1/2 UNICLASSIFIED NL UTION TEST CHART MISCELLANEOUS PAPER EL-86-2 # REMEDIAL INVESTIGATION OF CONTAMINANT MOBILITY AT NAVAL WEAPONS STATION CONCORD, CALIFORNIA SUBTITLE APPENDIX 2.5 — 1986/87 DATA by Charles R. Lee, L. Jean O'Neil, Dennis L. Brandon Richard G. Rhett, John G. Skogerboe, A. Susan Portzer Richard A. Price Environmental Laboratory DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631 June 1988 Final Report Approved For Public Release, Distribution Unlimited Prepared for DEPARTMENT OF THE NAVY Naval Facilities Engineering Command, Western Division San Bruno, California 94066 ## The fact of the property of the contract th The findings in this report are not to be construed as an official Dipartment of the Army position in essisplicated by other authorized documents. The contents of this report are not to be used for attentions, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the ise of each commercial products. Unclassified | SECURITY CLA | SSIFICATION O | F THIS PAGE | | | | | | |---|--|----------------------|---------------------------------------|-------------------------|----------------------------|-------------------|-----------------| | | REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 | | | | | | | | 1a. REPORT S
Unclass | ECURITY CLASS | SIFICATION | · · · · · · · · · · · · · · · · · · · | 16 RESTRICTIVE | MARKINGS | | | | 2a. SECURITY CLASSIFICATION AUTHORITY | | | 3 DISTRIBUTION/AVAILABILITY OF REPORT | | | | | | 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE | | | | Approved funlimited. | or public i | release; di | stribution | | 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) | | | | | | | | | Miscell | aneous Pa _l | per EL-86-2 | | ·1 | | | | | 6a. NAME OF
USAEWES | | ORGANIZATION | 6b. OFFICE SYMBOL (If applicable) | 7a. NAME OF N | ONITORING OR | GANIZATION | | | | mental <u>La</u> l | | CEWES-ES-R | | | | | | 6c. ADDRESS (City State, and ZIP Code) PO Box 631 Vicksburg, MS 39180-0631 | | | | 7b. ADDRESS (C | ity, State, and Z | (IP Code) | | | Vicksbu | rg, MS 39. | 180-0631 | | i | | | | | 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL (If applicable) | | | 9. PROCUREMEN | IT INSTRUMENT | IDENTIFICATION | NUMBER | | | See rev | | | <u> </u> | <u> </u> | | | | | 8c. ADDRESS | City, State, and | i ZIP Code) | | 10. SOURCE OF | FUNDING NUME PROJECT | BERS
TASK | WORK UNIT | | | | | ELEMENT NO. | NO. | NO. | ACCESSION NO. | | | 11. TITLE (Include Security Classification) Remodial Investigation of Control Mahilian No. 11. | | | | | | | | | 11. TITL E (Include Security Classification) Remedial Investigation of Contaminant Mobility at Naval Weapons Station, Concord, California; Subtitle Appendix 2.5 - 1986/87 Data | | | | | | | | | 12. PERSONAL AUTHOR(S) Lee, Charles R.: O'Neil, L. Jean: Brandon, Dennis I. Bhett, Bichard C. | | | | | | | | | 12 PERSONAL AUTHOR(S) Lee, Charles R.; O'Neil, L. Jean; Brandon, Dennis L.; Rhett, Richard G. Skogerboe, John G.; Portzer, A. Susan; Price, Richard A. | | | | | | | | | 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Final report FROM 10 June 1988 121 | | | | | | | | | 16. SUPPLEMENTARY NOTATION | | | | | | | | | Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. | | | | | | | | | Springi
17. | COSATI | | 18. SUBJECT TERMS (| ontinue on rever | se if necessary i | and identify by i | olock number) | | FIELD | GROUP | SUB-GROUP | | | | | | | | | | See rev | erse. | | | | | 10 1000 | 16 | | | | | | | | 19. ASSIDACI | (Continue on | reverse it necessary | and identify by block no | imber) | | | | | Th | is report | is an appendi | x to Miscellane | ous Paper El | 86-2. It | contains | corrections | | and sup | plemental | information t | o the original : | report, as v | ell as dat | a collecte | d between | | June 19 | 86 and Aug | ust 1987 to s | upplement previo | ously report | ed data an | d to furth | er delineate | | | | | | | | | | | the extent of contamination at Naval Weapons Station, Concord, California. It also
assesses the impact of the 1986 flood on the redistribution of contamination. The
derived data include soil analysis, a clam bioassay, and ground-water samples. Wetland | | | | | | | | | | | lso delineate | .1 4 | , , | _ | er sampies | . wetland | | boundar | ico were o | iso delineace | . Ocean. | r et la la | • | | | | | | |) | ; | | | | | | | | | | | | | LITY OF ABSTRACT | 107 | 21 ABSTRACT S | | FICATION | | | | SIFIED/UNLIMIT
F RESPONSIBLE | ED SAME AS R | RPT DTIC USERS | Unclas
22b TELEPHONE | sified
(Include Area Co | ode) 22c. OFFIC | E SYMBOL | | | | | | | | | | | DD Form 147 | 73. JUN 96 | | Previous editions are | obsolete. | SECURI | TY CLASSIFICATION | ON OF THIS PAGE | ### Unclassified SECURITY CLASSIFICATION OF THIS PAGE 8a. NAME OF FUDNING/SPONSORING ORGANIZATION (Continued). DEPARTMENT OF THE NAVY Naval Facilities Engineering Command Western Division 18. SUBJECT TERMS (Continued). Animal bioassay ! Arsenic ' Cadmium Contaminant mobility , vor fil Constitution of the contraction Copper) Ground water Lead, Metal contamination, Remedial investigation, Upland contamination . Wetland delineation Zinc, mi DTIC COPY NOPECTED | Acces | sion For | | | | |---------------|----------|-------|--|--| | NTIS | GRA&I | 100 | | | | DTIC | TAB | ā | | | | Unann | ounced | | | | | Justification | | | | | | | | | | | | Ву | | | | | | Distribution/ | | | | | | Avai | lability | Codes | | | | | Avail an | d/or | | | | Dist | Specia | 1 | | | | 1 | 1 | | | | | 21 | | | | | | n | } | | | | | | | | | | Unclassified #### **PREFACE** This report is an appendix to Miscellaneous Paper EL-86-2. It contains corrections and supplemental information to the original report, as well as data collected between June 1986 and August 1987. This study was conducted by Dr. C. R. Lee, Soil Scientist, under the general supervision of Lloyd Saunders, Chief, Contaminant Mobility and Regulatory Criteria Group; Mr. D. L. Robey, Chief, Ecosystem Research and Simulation Division; Dr. C. Kirby, Chief, Environmental Resources Division; and Dr. J. Harrison, Chief, Environmental Laboratory. Technical contributions in the conduct of field sampling, laboratory testing, and report preparation were received from the following scientists: Mr. D. L. Brandon, Statistician, for experimental design, chain of custody labeling and data analysis; Dr. J. Simmers, Research Biologist, Mr. R. G. Rhett, Biologist, and Ms. A. S. Portzer, Biologist, for the clam bioassay and condition index; Mr. J. G. Skogerboe, Hydrologist, and Mr. R. A. Price, Agronomist, for soil sample collection, surveying sample-site locations and map preparation; Ms. L. J. O'Neil, Ecologist, Mr. C. J. Newling, Wildlife Biologist, and Mr. R. Theriot, Biologist, for the wetland delineation; Mr. G. Warren, Chemist, and Mr. D. Brown, Chemist, for metal analysis of soil and animal samples. Soil samples were also analyzed by Princeton Testing Laboratory, Inc., Princeton, New Jersey. Ground-water samples were analyzed by Sequoia Analytical Laboratory, Redwood City, California. Additional assistance in manuscript preparation was received from Ms. S. Calvin, Ms. M. J. Spivey, Ms. J. Moore, and Mr. P. Laible. Col Dwayne G. Lee, CE, was the Commander and Director of WES. Dr. Robert W. Whalin was Technical Director. This report should be cited as follows: Charles and the second Lee, C. R., et al. 1988. "Remedial Investigation of Contaminant Mobility at Naval Weapons Station, Concord, California; Subtitle Appendix 2.5 - 1986/87 Data," Miscellaneous Paper EL-86-2, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. #### TABLE OF CONTENTS | | | Page | |---|--|----------------------| | PREFACE | | . i | | 2.5.1 | Introduction | . 1 | | 2.5.2 | Errata to Miscellaneous Paper EL-86-2 | . 2 | | 2.5.3 | Field and Laboratory Methods for Safe Handling of
Contaminated Materials from the Naval Weapons
Station, Concord | . 6 | | 2.5.3.1
2.5.3.2 | | | | 2.5.4 | Clam Biomonitoring | . 6 | | 2.5.4.1
2.5.4.2 | * | | | 2.5.5 | Kiln Site Sampling | . 11 | | 2.5.6 | Report of Geotechnical Fieldwork at the Kiln Site, Naval Weapons Station, Concord | . 11 | | 2.5.6.1
2.5.6.2
2.5.6.3
2.5.6.4
2.5.6.5 | Prilling Well Construction Health and Safety Plan | . 12
. 17
. 17 | | 2.5.7 | Ground-water Sampling at the Kiln Site, Naval Weapons Station, Concord | . 18 | | 2.5.8 | Wetland Delineation at Naval Weapons Station, Concord | . 19 | | | Site Description and Methods | | | 2.5.9 | References | . 22 | | 2.5.10 | Sample Identification and Variable Description | . A1 | | 2.5.10.
2.5.10.
2.5.10. | 1 Table A1-A32 Sample ID and Variable Description | . B1
. C1
. D1 | #### LIST OF TABLES | No. | | Page | |------------------|-------------------------------------|-------| | 2.5-1 | Clam Tissue Analysis | | | 2.5-2 | Regression Parameters | | | 2.5-A1 | Soil Analysis (June and July 1986) | | | 2.5-A2 | Blank Analysis | | | 2.5-A3 | Blank Analysis Summary | . A5 | | 2.5-A4 |
NBS River Sediment Analysis | | | 2.5-A5 | NBS River Sediment Analysis Summary | | | 2.5-A6 | Soil Analysis (June and July 1986) | | | 2.5-A7 | Blank Analysis | | | 2.5-A8 | Blank Analysis Summary | | | 2.5-A9 | NBS River Sediment Analysis | | | 2.5-A10 | NBS River Sediment Analysis Summary | | | 2.5-A11 | Soil Analysis (June and July 1986) | | | 2.5-A12 | Blank Analysis | | | 2.5-A13 | Blank Analysis Summary | | | 2.5-A14 | NBS Sediment Analysis | | | 2.5-A15 | NBS Sediment Analysis Summary | | | 2.5-A16 | Soil Analysis (June and July 1986) | | | 2.5-A17 | Blank Analysis | | | 2.5-A18 | Blank Analysis Summary | | | 2.5-A19 | NBS Sediment Analysis | | | 2.5-A20 | NBS Sediment Analysis Summary | | | 2.5-A21 | Soil Analysis (June and July 1986) | | | 2.5-A22 | Blank Analysis | | | 2.5-A23 | Blank Analysis Summary | | | 2.5-A24 | NBS Sediment Analysis | | | 2.5-A25 | NBS Sediment Analysis Summary | | | 2.5-A26 | Soil Analysis (December 1986) | | | 2.5-A27 | Blank Analysis | | | 2.5-A28 | Blank Analysis Summary | | | 2.5-A29 | NBS River Sediment Analysis | | | 2.5-A30 | NBS River Sediment Analysis Summary | | | 2.5-A31 | Soil Analysis (March 1987) | | | 2.5-A32 | Mean Soil Analysis | | | 2.5-B1 | Wet Extraction (June and July 1986) | | | 2.5-B2 | Blank Analysis | | | 2.5-B3 | Blank Analysis Summary | | | 2.5-B4 | Wet Extraction (June and July 1986) | | | 2.5-B5 | Wet Extraction (December 1986) | | | 2.5-B6 | Blank Analysis | . B13 | | 2.5-B7 | Blank Analysis Summary | | | 2.5-C1 | EP Toxicity (June and July 1986) | | | 2.5-C2
2.5-C3 | Blank Analysis | | | | Blank Analysis Summary | | | 2.5-C4 | EP Toxicity (June and July 1986) | | | 2.5-C5 | Blank Analysis | . C9 | #### LIST OF TABLES (Continued) Page No. 2. 2. 2.5-6 2.5 - 7 2.5 - 8 | | 2.5-C6
2.5-C7
2.5-C8
2.5-C9 | Blank Analysis Summary | C11
C12 | |------|--------------------------------------|--|------------| | | 2.5-C10 | EP Toxicity (March 1987) | | | | 2.5-D1 | Clam Tissue Analysis (June 1986) | D2 | | | 2.5-D2 | Blank Analysis | D4 | | | 2.5-D3 | Blank Analysis Summary | | | | 2.5-D4 | NBS Standard Analysis | D6
D7 | | | 2.5-D5
2.5-D6 | NBS Standard Analysis Summary | D8 | | | 2.5-D0
2.5-D7 | Initial Clam Tissue Analysis Summary | D8 | | | 2.5-D7
2.5-D8 | Mean Clam Tissue Analysis | D10 | | | 2.5-D9 | Summary of Field-collected Water Quality Data | D11 | | | 2.5-D10 | Condition Index of Corbicula fluminea for | | | | | Concord Naval Weapons Station | D12 | | | 2.5-D11 | Clam Biomonitoring Metal Concentrations | | | | 2.5-D12 | Field Measurements for Kiln Site Monitoring | | | | | Wells (May and August 1987) | D15 | | | 2.5-D13 | Well Development and Ground-water Analysis | D16 | | | 2.5-D14 | Water Sample Analysis (May 1987) | D17 | | | 2.5-D15 | Water Sample Quality Control Data (May 1987) | | | | 2.5-D16 | Water Sample Analysis (August 1987) | | | | 2.5-E1 | Sample Survey Measurements | E1 | | | | | | | | | LIST OF FIGURES | | | No | • | | Page | | | _ | | | | 2.5 | | ibution of soil cadmium concentrations in excess 2.7 mg/kg | 2 | | 2.5 | | biomonitoring locations, Naval Weapons Station, | | | ٠. ٠ | | cord, 21 May-19 June 1986 | | | | Ç011 | | | 2.5-3 Condition index locations for clam biomonitoring study, Naval Weapons Station, Concord, biomonitoring study, Naval Weapons Station, 2.5-4 Average condition index values for clam 21 May-19 June 1986..... 9 Concord, 21 May-19 June 1986......10 #### SUBTITLE APPENDIX 2.5 - 1986/87 DATA #### 2.5.1 Introduction Additional investigation was conducted after publication of the Remedial Investigation (R.I.) by Lee et al. (1986), to further define the extent of contamination at Naval Weapons Station (NWS), Concord, California. The discovery of possible burial of debris at the Kiln Site required an expanded remedial investigation for that site. This report is a detailed description of these and other data collection efforts. The purposes of the report to: - a. Provide corrections, supplemental information and clarification of the initial R.I. report. - b. Report and evaluate additional data collected after the publication of the R.I. - c. Assess possible effects of the 1986 flood on redistribution of contamination. - d. Further delineate the extent of contamination in specific locations at NWS Concord. Data are presented in Tables 2.5-A1-A32, B1-B7, C1-C10, and D1-D16. These data were derived using a nitric acid soil digestion procedure, the wet extraction procedure of the California Department of Health Sciences, the extraction procedure of the Resource Conservation and Recovery Act (RCRA), and a nitric acid tissue digestion procedure, respectively. The analytical work was performed by the Analytical Laboratory Group, Environmental Laboratory, US Army Engineer Waterways Experiment Station (WES) and Princeton Testing Laboratory, Inc., Princeton, New Jersey. Ground-water data and wetland delineation techniques were used to further evaluate the sites. Tables 2.5-D14 and D16 list ground-water data. This analytical work was performed by Sequoia Analytical Laboratory, Redwood City, California. Table 2.5-E1 lists the survey measurements of new locations. The documents listed below are primary sources of information. Other reference documents cited in the text are listed in Section 2.5.9. - a. Harvey and Stanley Associates, Inc. 1986. "Background Information for Section 7 Consultation at Concord Naval Weapons Station," Alviso, Calif. - b. Lee, C. R., et al. 1986. "Remedial Investigation of Contaminant Mobility at Naval Weapons Station, Concord, California," Miscellaneous Paper EL-86-2, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. - c. Lee, C. R., Cullinane, M. John Jr., and O'Neil, L. Jean. 1988. "Feasibility Study of Contamination Remediation at Naval Weapons Station, Concord, California; Volume III: Figures," Miscellaneous Paper EL-86-3, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. - d. Environmental Laboratory. 1987. "Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. - e. Newling, C. J. 1987. "Wetland Delineation at Naval Weapons Station Concord, California," Environmental Laboratory, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. - 2.5.2 Errata to Miscellaneous Paper EL-86-2 The following corrections are presented for the report entitled "Remedial Investigation of Contaminant Mobility at Naval Weapons Station, Concord, California" (Lee et al. 1986). - *page xviii; The title of Table 2-B12: Contract NBS River Sediment Analysis - *page 142; The word "soil" in the last sentence should be replaced by the word "solid." - *page 149; The horizontal axis should be: 0 1000 2000 3000 4000 5000 6000 7000 8000 - *page 186; After the third reference on this page, insert the following: Holnigren, G. G., Meyer, M. W., Daniels, R. B., Chaney, R. L., and Kubota, J. 1987. "Cadmium, Lead, Zinc, Copper, and Nickel in Agricultural Soils of the United States," Journal of Environmental Quality (in press). - *page 197; Replace observation 16 with the following line: 16 BKPCW1337 0.00 0.11 C 2.91 E 0.42 B 0.43 BC 0.00 39.09 E - *page 210; The IDs for observations 90, 91, and 92 should be changed from K2SCW12H1, K2SCW12J1, K2SCW12K1 to ESSCW12H1, ESSCW12J1, and ESSCW12K1 respectively. The correct ID for observation 95 is K2SCW6P2. - *page 211; The title should be: Contract NBS River Sediment Analysis - *page 484 (Figure 5-3); Contractor sample IDs 29E1 and 29E2 should be 28E1 and 28E2. These corrections appear in Figure 43 (Lee et al. 1988). - *page 488 (Appendix 5-A); The correct IDs for sample numbers 154 and 155 are 28E2 and 28E1, respectively. - *pages 123 and 193 (Figure 2-60 and Table 2-A2); revised versions are presented as Figure 2.5-1 and Table 2.5-1, respectively. - Table 2.5-2 complements information presented in Lee et al. (1986). Figure 2.5-1. Distribution of soil cadmium concentrations in excess of 2.7 mg/kg. Solid circles were WES collected samples, open circles were Brown and Caldwell collected samples. (Replaces Figure 2-60, p 123, Lee et al. 1986) Table 2.5-1* Clam Tissue Analysis | AACLW1241 2.01 AB 0.71 CD 66.32 ABCDEFGH 0.29 C 1.07 0.99 AACLW1242 1.72 ABCDEFGH 1.39 B 68.23 ABCDEFG 0.26 C 0.43 1.40 AACLW1244 1.91 ABCD 0.63 D 78.93 AB 0.37 C 0.96 1.07 AACLW1244 1.85 ABCDEF 1.23 BC 6.33 BEGREHI 0.40 C 2.04 1.00 AACLW1244 1.89 ABCDEF 1.23 BC 6.33 BEGREHI 0.41 C 4.24 0.94 AACLW1246 1.89 ABCDEF 0.96 D 56.63 DEFGHI 0.45 C 0.46 1.09 AACLW16V2 1.90 ABCDE 0.96 BCD 51.37 IHJG 0.15 C 0.19 0.99 AACLW16V3 1.30 DEFGH 0.89 BCD 51.55 IHJ 0.40 C 0.15 C 0.19 0.98 BKCLW1162 1.94 ABC 0.90 BCD 75.41 ABC 0.40 C 0.34 1.11 AACLW1624 1.98 ABCDEF 0.87 CD 80.09 ACD 0.28 C 0.52 1.00 BKCLW133 2.26 A 0.84 CD 75.43 ABCDE 0.55 C 1.40 1.95 BKCLW133 2.12 A 0.72 CD 64.28 ABCDEFGHI 0.79 C 0.43 C 0.54 BKCLW1334 2.03 AB 0.75 CD 54.96 CDEFGHIJ 0.79 C 0.43 C 0.54 BKCLW1334 1.94 ABC 0.75 CD 54.96 CDEFGHIJ 0.79 C 1.45 1.45 ESCLW131 1.94 ABC 0.75 CD 54.96 CDEFGHIJ 0.79 C 1.45 1.45 ESCLW131 1.94 ABC 0.75 CD 55.96 CDEFGHIJ 0.79 C 1.45 1.45 ESCLW131 1.94 ABC 0.75 CD 55.96 CDEFGHIJ 0.79 C 1.45 1.45 ESCLW131 1.38 CDEFGH 0.96 BCD 72.53 ABCD 0.76 C 1.29 1.82 GGLCW12N2 1.75 FGH 0.95 BCD 65.54 ABCDEFGH 0.76 C 1.29 1.82 GGLCW13M1 1.25 GH 0.95 BCD 65.54 ABCDEFGH 0.76 C 1.29 1.82 GGLCW13M1 1.22 GH 0.95 BCD 75.04 BCDEFGHI 0.75 C 0.76 C 1.29 GGLCW13M1 1.22 GH 0.95 BCD 75.04 BCDEFGHI 0.75 C 0.76 C 1.29 GGLCW13M1 1.22 GH 0.95 BCD 75.04 BCDEFGHI 0.75 C | 自 | MAS | MCD | MCU | MPB | MINI | MSE | MZN |
--|--------------|-----------------------|-----|----------------|------------------|--------------|---------------------|--| | 1.91 ABCD 1.82 ABCDEF 1.89 ABCDEF 1.89 ABCDEF 1.89 ABCDEF 1.23 BC 63.38 BCDEFGHI 1.80 ABCDE 1.80 ABCDE 1.80 BCD 51.97 IHJG 1.30 DEFGH DEFG | 241 242 242 | 2.01 AB 1.72 ABCDEFGH | | 32
23
46 | 29
26
40 | 1.07 | 0.99 HIJ
1.40 EF | 119.78 EFG
152.58 DE
139.31 EDGF | | 1.85 ABCDEF 0.59 D 56.63 DEFGHI 0.41 C 4.24 1.89 ABCDEF 1.23 BC 63.38 BCDEFGHIJ 0.28 C 0.46 1.90 ABCDE 0.96 BCD 51.97 IHJG 0.15 C 0.19 1.30 DEFGH 0.89 BCD 51.57 IHJG 0.06 C 0.15 1.43 BCDEFGH 0.89 BCD 51.55 IHJ 0.40 C 0.34 1.94 ABC 0.90 BCD 75.41 ABC 0.47 C 1.09 1.88 ABCDEF 0.87 CD 80.09 A 0.27 C 1.38 1.96 ABC 0.72 CD 64.28 ABCDEFGHI 0.28 C 0.52 2.26 A 0.84 CD 71.38 ABCDE 0.58 C 1.40 1.71 ABCDEFGH 0.63 D 48.02 IJJ 1.01 C 1.09 2.12 A 0.72 CD 54.39 IHJGF 0.58 C 1.45 1.38 CDEFGH 0.63 D 48.02 IJJ 1.01 C 1.09 2.13 AB 0.75 CD 59.96 CDEFGHIJ 0.79 C 1.45 1.34 ABC 1.11 BCD 60.14 CDEFGHIJ 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.27 FGH 1.40 B 69.22 ABCDEF 5.31 A 0.26 1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 1244 | 1.91 ABCD | | 93 | 37 | 0.96 | | 28 | | 1.89 ABCDEF 1.23 BC 63.38 BCDEFGHIJ 0.28 C 0.46 1.90 ABCDE 0.96 BCD 51.97 IHJG 0.15 C 0.19 1.30 DEFGH 0.86 CD 47.67 J 0.06 C 0.15 1.43 BCDEFGH 0.89 BCD 51.55 IHJ 0.40 C 0.34 1.94 ABC 0.90 BCD 75.41 ABC 0.47 C 1.09 1.96 ABC 0.72 CD 64.28 ABCDEFGHI 0.28 C 0.52 2.26 A 0.84 CD 71.38 ABCDE 0.58 C 1.40 1.71 ABCDEFGH 0.63 D 48.02 IJ 1.01 C 1.09 2.12 A 0.72 CD 54.39 IHJGF 0.79 C 1.45 1.13 CDEFGHIJ 0.79 C 1.45 1.34 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.77 C 0.77 1.35 CDEFGHIJ 0.77 C 0.77 C 0.77 C 1.29 1.36 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 0.15 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.27 FGH 1.40 B 69.22 ABCDEF 5.31 A 0.26 1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.28 FGH 0.95 BCD 75.30 ABC 5.82 A 0.06 | 1245 | 1.85 ABCDEF | | 63 | 41 | 4.24 | | 45 | | 1.90 ABCDE 0.96 BCD 51.97 IHJG 0.15 C 0.15 C 1.30 DEFGH 0.86 CD 47.67 J 0.06 C 0.15 C 1.30 DEFGH 0.89 BCD 51.55 IHJ 0.40 C 0.34 C 1.94 ABC 0.90 BCD 75.41 ABC 0.47 C 1.09 C 1.94 ABC 0.72 CD 64.28 ABCDEFGHI 0.28 C 0.52 C 1.38 C 1.40 C 1.71 ABCDEFGH 0.63 D 48.02 IJ 1.01 C 1.09 C 1.21 A 0.72 CD 54.39 IHJGF 0.43 C 0.81 C 1.45 C 1.34 ABC 1.11 BCD 60.14 CDEFGHIJ 0.79 C 1.45 C 1.38 CDEFGH 1.11 BCD 60.14 CDEFGHIJ 0.77 C 0.77 C 1.44 BCDEFGH 0.09 BCD 72.53 ABCD 3.21 B 3.38 CDEFGH 0.09 BCD 72.53 ABCD 3.21 B 3.38 C 1.40 B 69.22 ABCDEFGH 5.31 A 0.26 C 1.20 | 1246 | 1.89 ABCDEF | | 8 8 | 28 | 0.46 | | 65 | | 1.43 BCDEFGH 0.89 BCD 51.55 IHJ 0.40 C 0.34 1.94 ABC 0.90 BCD 75.41 ABC 0.47 C 1.09 1.88 ABCDEF 0.87 CD 80.09 A 0.27 C 1.38 1.96 ABC 0.72 CD 64.28 ABCDEFGHI 0.28 C 0.52 2.26 A 0.84 CD 71.38 ABCDE 0.58 C 1.40 1.71 ABCDEFGH 0.63 D 48.02 IJ 1.01 C 1.09 2.12 A 0.72 CD 54.39 IHJGF 0.43 C 0.81 2.03 AB 0.75 CD 59.96 CDEFGHIJ 0.79 C 1.45 1.94 ABC 1.11 BCD 60.14 CDEFGHIJ 0.79 C 1.45 1.38 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.12 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 16V2
16V3 | 1.90 ABCDE | | 6 6 | ე <mark>გ</mark> | 0.19
0.15 | | 36 | | 1.94 ABC 0.90 BCD 75.41 ABC 0.47 C 1.09 1.88 ABCDEF 0.87 CD 80.09 A 0.27 C 1.38 1.96 ABC 0.72 CD 64.28 ABCDEFGHI 0.28 C 0.52 2.26 A 0.84 CD 71.38 ABCDE 0.58 C 1.40 1.71 ABCDEFGH 0.63 D 48.02 IJ 1.01 C 1.09 2.12 A 0.72 CD 54.39 IHJGF 0.43 C 0.81 2.03 AB 0.75 CD 59.96 CDEFGHIJ 0.79 C 1.45 1.94 ABC 1.11 BCD 60.14 CDEFGHIJ 0.79 C 1.45 1.38 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.17 H 1.40 B 69.22 ABCDEF 5.31 A 0.26 1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 1674 | 1.43 BCDEFGH | | 55 | 40 | 0.34 | | 45 | | 1.88 ABCDEF 0.87 CD 80.09 A 0.27 C 1.38
1.96 ABC 0.72 CD 64.28 ABCDEFGHI 0.28 C 0.52
2.26 A 0.84 CD 71.38 ABCDE 0.58 C 1.40
1.71 ABCDEFGH 0.63 D 48.02 IJ 1.01 C 1.09
2.12 A 0.72 CD 54.39 IHJGF 0.43 C 0.81
2.03 AB 0.75 CD 59.96 CDEFGHIJ 0.79 C 1.45
1.34 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.74
1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83
1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38
1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26
1.22 GH 1.22 BC 66.39 ABCDEFGH 6.12 A 0.26
1.20 GH 0.92 BCD 75.30 ABC 5.31 A 0.26
1.20 GH 0.92 BCD 75.30 ABC 5.31 A 0.26
1.22 GH 0.92 BCD 75.30 ABC 5.31 A 0.26
1.22 GH 0.92 BCD 75.30 ABC 5.31 A 0.26
1.22 GH 0.92 BCD 75.30 ABC 5.32 A 0.06 | 1624 | 1.94 ABC | | 41 | 47 | 1.09 | | 84 | | 1.96 ABC 0.72 CD 64.28 ABCDEFGHI 0.28 C 0.52 2.26 A 0.84 CD 71.38 ABCDE 0.58 C 1.40 1.71 ABCDEFGH 0.63 D 48.02 IJ 1.01 C 1.09 2.12 A 0.72 CD 54.39 IHJGF 0.43 C 0.81 2.03 AB 0.75 CD 59.96 CDEFGHIJ 0.79 C 1.45 1.34 ABC 1.11 BCD 60.14 CDEFGHIJ 0.81 C 0.53 1.38 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.17 H 1.40 B 69.22 ABCDEF 3.50 B 0.15 1.22 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 71161 | 1.88 ABCDEF | | 60 | 27 | 1.38 | | 87 | | 2.26 A 0.84 CD 71.38 ABCDE 0.58 C 1.40 1.71 ABCDEFGH 0.63 D 48.02 IJ 1.01 C 1.09 2.12 A 0.72 CD 54.39 IHJGF 0.43 C 0.81 2.03 AB 0.75 CD 59.96 CDEFGHIJ 0.79 C 1.45 1.34 ABC 1.11 BCD 60.14 CDEFGHIJ 0.81 C 0.53 1.38 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.17 H 1.40 B 69.22 ABCDEF 5.31 A 0.26 1.22 GH 1.22 BC 66.39 ABCDEFGH 6.12 A 0.05 1.20 GH 0.63 D 51.04 IHJ 0.37 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 11162 | 1.96 ABC | | 28 | 28 | 0.52 | | 39 | | 1.71 ABCDEFGH 0.63 D 48.02 IJ 1.01 C 1.09 2.12 A 0.72 CD 54.39 IHJGF 0.43 C 0.81 2.03 AB 0.75 CD 59.96 CDEFGHIJ 0.79 C 1.45 1.94 ABC 1.11 BCD 60.14 CDEFGHIJ 0.81 C 0.53 1.38 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.17 H 69.22 ABCDEF 3.50 B 0.15 1.22 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 11331 | 2.26 A | | 38 | 28 | 1.40 | | 43 | | 2.12 A 0.72 CD 54.39 IHJGF 0.43 C 0.81
2.03 AB 0.75 CD 59.96 CDEFGHIJ 0.79 C 1.45
1.94 ABC 1.11 BCD 60.14 CDEFGHIJ 0.81 C 0.53
1.38 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.74
1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83
1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38
1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29
1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26
1.17 H 1.40 B 69.22 ABCDEF 5.31 A 0.26
1.22 GH 0.63 D 51.04 IHJ 0.11 C 0.37
1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 11332 | 1.71 ABCDEFGH | | 02 | 01 | 1.09 | | 47 | | 2.03 AB 0.75 CD 59.96 CDEFCHIJ 0.79 C 1.45 1.94 ABC 1.11 BCD 60.14 CDEFCHIJ 0.81 C 0.53 1.38 CDEFCH 1.12 BCD 54.01 IHJGF 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFCHIJ 1.31 C 1.83 1.44 BCDEFCH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFCH 5.31 A 0.26 1.17 H 1.40 B 69.22 ABCDEFCH 5.31 A 0.26 1.22 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.20 GH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 1333 | 2.12 A | | 39 | 43 | 0.81 | | 32 | | 1.94 ABC 1.11 BCD 60.14 CDEFGHIJ 0.81 C 0.53 1.38 CDEFGH 1.12 BCD
54.01 IHJGF 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.17 H 0.63 D 69.22 ABCDEFGH 6.12 A 0.26 1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 1334 | 2.03 AB | | 96 | 6/ | 1.45 | | 11 | | 1.38 CDEFGH 1.12 BCD 54.01 IHJGF 0.77 C 0.74 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26 1.17 H 1.40 B 69.22 ABCDEF 3.50 B 0.15 1.22 GH 1.22 BC 66.39 ABCDEFGH 6.12 A 0.26 1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 13H1 | 1.94 ABC | | 14 | 81 | 0.53 | | 15 | | 1.15 H 0.92 BCD 61.75 CDEFGHIJ 1.31 C 1.83
1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38
1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29
1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26
1.17 H 1.40 B 69.22 ABCDEF 3.50 B 0.15
1.22 GH 6.39 ABCDEFGH 6.12 A 0.26
1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37
1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 1331 | 1.38 CDEFGH | | 01 | 11 | 0.74 | | 28 | | 1.44 BCDEFGH 0.96 BCD 72.53 ABCD 3.21 B 3.38
1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29
1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26
1.17 H 69.22 ABCDEF 3.50 B 0.15
1.22 GH 1.22 BC 66.39 ABCDEFGH 6.12 A 0.26
1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37
1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 13K1 | 1.15 H | | 75 | 31 | 1.83 | | 42 | | 1.99 ABC 0.76 CD 55.01 EIHJGF 0.76 C 1.29
1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26
1.17 H 1.40 B 69.22 ABCDEF 3.50 B 0.15
1.22 GH 1.22 BC 66.39 ABCDEFGH 6.12 A 0.26
1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37
1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 13L1 | 1.44 BCDEFGH | | 53 | 21 | 3.38 | | 78 | | 1.27 FGH 1.05 BCD 65.54 ABCDEFGH 5.31 A 0.26
1.17 H 1.40 B 69.22 ABCDEF 3.50 B 0.15
1.22 GH 1.22 BC 66.39 ABCDEFGH 6.12 A 0.26
1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37
1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 14F1 | 1.99 ABC | | 01 | 9/ | 1.29 | | 87 | | 1.17 H 1.40 B 69.22 ABCDEF 3.50 B 0.15
1.22 GH 1.22 BC 66.39 ABCDEFGH 6.12 A 0.26
1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37
1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 12N2 | | | 54 | 31 | 0.26 | | 91 | | 1.22 GH 1.22 BC 66.39 ABCDEFGH 6.12 A 0.26
1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37
1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 131.4 | | | 22 | တ္တ | 0.15 | | 9/ | | 1.20 GH 0.63 D 51.04 IHJ 0.11 C 0.37
1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 13M1 | 1.22 GH | | 39 | 12 | 0.26 | | 97 | | 1.28 FGH 0.92 BCD 75.30 ABC 5.82 A 0.06 | 4R1R | 1.20 GH | | 04 | 11 | 0.37 | | 69 | | | 8P3R | 1.28 FGH | | 30 | 82 | 90.0 | | 24 | Replaces Table 2-A2, page 193, Lee et al. 1986. Table 2.5-2 Regression Parameters | Figure No. | Page No. | Slope | Intercept | |------------|----------|--------|-----------| | 2-72 | 136 | 0.612 | 0.649 | | 2-73 | 137 | 0.338 | 2.924 | | 2-74 | 139 | 0.556 | 19.245 | | 2-80 | 146 | 0.455 | 0.958 | | 2-81 | 147 | 0.255 | 1.494 | | 2-82 | 148 | 0.306 | 1.520 | | 2-83 | 149 | 0.020 | 4.674 | | 2-84 | 150 | 0.697 | 4.554 | | 2-85 | 151 | 0.004 | 143.115 | | 2-86 | 153 | 2.524 | 0.577 | | 2-87 | 154 | 98.653 | 9.041 | | 2-88 | 155 | 0.927 | 4.568 | | 2-89 | 156 | 4.326 | 4 855 | # 2.5.3 Field and Laboratory Methods for Safe Handling of Contaminated Materials from the Naval Weapons Station, Concord Because of the presence of hazardous substances in the sample areas at the Naval Weapons Station Concord, WES employees took the necessary precautions to ensure safe handling of the sampled materials. The concern was mainly to prevent any unnecessary exposure to personnel during the handling of the materials and to secure the materials and the equipment used to collect the materials in such a manner as to prevent any contamination outside the sample area. #### 2.5.3.1 Field Sampling and Surveying Precautions were taken in the field to prevent exposure to dusts that could be inhaled or adsorbed to the skin while WES personnel were engaged in sampling of soil materials and surveying the location of the sampled sites. Protective paper suits, boots, facial dust masks, and gloves were worn to deter contact with contaminated materials. All materials used to clean collecting equipment and discarded protective apparel were placed in an ice cooler and returned to the WES with the collected samples. These materials were placed in a sealed drum that will be shipped to an EPA-approved hazardous waste storage area. The soil samples were placed in plastic ziplock containers and sealed in ice coolers to prevent leakage and unauthorized entry during transportation. #### 2.5.3.2 Laboratory Handling of Samples During the preparation of the samples for laboratory analysis, precautions were taken, as in the field, to prevent exposure to personnel. Dust masks, gloves, and laboratory aprons were worn as the situation required. Contaminated lab apparel, filters, and spent soil materials were placed in a sealed drum for proper disposal. Raw and processed samples were secured under chain-of-custody procedures and stored in locked areas to prevent access by unauthorized persons. #### 2.5.4 Clam Biomonitoring #### 2.5.4.1 Description The WES Ecosystem Research and Simulation Division completed a clam biomonitoring study at the NWS during the summer of 1984 (Lee et al. 1986). As a result of spring flooding in 1986, the WES initiated a second clam biomonitoring study to document possible changes in contaminant bioavailability in those areas of the NWS affected by the flood. The WES believed that substantial amounts of toxic metal-contaminated surface materials might have moved into the NWS drainage system and thereby threatened the NWS and Suisun Bay aquatic ecosystem. The 33 sites chosen for the 1986 biomonitoring study are shown in Figure 2.5-2. Of these sites, 15 had not been monitored in 1984. These 15 were located within Parcels 571 and 572 and the property adjacent to the west of these parcels. The experimental design for the 1984 and 1986 biomonitoring studies was the same, except for the increase in the number of animals used in each cage to allow for split samples. Approximately 3,000 Corbicula fluminae were collected from the Sacramento River delta (upstream of the NWS site) and air-freighted to the WES. In addition to field testing, these clams were exposed to background chemical analysis (three replicates of 30 clams each) and Condition Indexing (Lawrence and Scott 1982). Condition Index, a good indicator of the health of the animal, was measured for 20 animals collected from the WES holding tanks the day the clams were transported to the field and on the day they were removed from the field. The <u>Corbicula</u> were held at the WES in fiberglass tubs in aged tap water with a 3-cm layer of coarse sand. Water quality readings were made daily, and the temperature was maintained at 15° C \pm 2° C. The clams were fed freshwater algae <u>Ankistrodesmus falcatus</u> and a commercial yeast mixture. The clams were slowly acclimated to a salinity level near that in the field at the NWS (2-3 ppt). Three replicates of 25 clams each were placed at each NWS biomonitoring site for 28 days. Water quality measurements were made for each site for Days O and 28 (Table 2.5-D9). At the end of the 28-day test period, the clams were collected and placed in sealable plastic bags. They were kept cool in insulated containers during field collection and subsequent transport to the WES. At the WES they were allowed to purge their gut contents overnight in fresh aged tap water at 15° C. The clams were then prepared for metal analysis and Condition Indexing. Tissues for metal analysis were prepared, digested and analyzed as before (Lee et al. 1986). Eleven sites were selected for Condition Index determinations (Figure 2.5-3). These samples were composed of approximately equal subsamples from each replicate at each site. Those metals (As, Cd, Pb, and Zn) demonstrating the greatest tissue uptake in the 1984 clam biomonitoring study were selected for analysis. #### 2.5.4.2 Results and Discussion essi persental languages indications in the second languages. The Condition Index values for all NWS biominitoring sites (shown in Figure 2.5-4 and listed in Table 2.5-D10) were equal to or greater than the Days 0 and 28 backgound laboratory values. These data for the ratio of tissue weight to shell cavity size indicate that the clams used in the NWS biomonitoring study were actively feeding during their test period. The water quality data from the field listed in Table 2.5-D9 showed adequate conditions for clam growth. Survival was near 100 percent for all sites except K28P3 (all three replicates lost in grass fire) and AA10S3 and AA7R1 (where one replicate sample was lost due to clam desiccation). Figure 2.5-2 Clam biomonitoring locations, Naval Weapons Station, Concord, 21 May-19 June 1986 Figure 2.5-3. Condition index locations for clam biomonitoring study, Naval Weapons Station, Concord, 21 May-19 June 1986 Figure 2.5-4. Average condition index values for clam biomonitoring study, Naval Weapons Station, Concord, 21 May-19 June 1986 Table 2.5-D11 represents the range of metal concentrations from the clam biomonitoring sites in 1984 and 1986 compared with literature collected field data. From these data, it is apparent that the overall metal uptake by the clams increased only slightly from 1984 to 1986. However, a large number of 1986 AA sites showed As and Zn tissue concentrations statistically above 1986 remote reference area field values as well as Cd values above those of the remote reference area in the G1 area and the AA area bordering the KS site (Table 2.5-D8). Although the number of biomonitoring sites with tissue metal concentrations statistically above the remote reference area increased from 1984 to 1986, the metal tissue concentrations from most
sites tested both years remained nearly unchanged. Thus, the increase in the number of sites containing above remote reference area tissue levels of As and Zn, and to a lesser extent Cd, was probably due to such sites not being sampled in 1984 rather than to changes in contaminant bioavailability caused by the 1986 spring flooding. The most significant clam bioaccumulation observed in 1986 was in the As tissue contents which were elevated above remote reference area in ditches that drain the AA area of Parcel 572. These data indicate some movement of As from the highly contaminated AA area, near the dike surrounding the Allied Waste Lagoon, into drainage ditches and the creek that drains the wetland. The maximum Cd, Zn, Pb, and As tissue concentrations from this biomonitoring study did not exceed the Food and Drug Administration criteria for human consumption or the range of field-collected Corbicula from noncontaminated areas (Lee et al. 1985). In addition, the Condition Index data suggest that, during the period of 21 May - 19 June 1986, the uptake of metals by C. fluminae caused no significant physiological stress to the clams, except possibly in the ESI area. Therefore, the surface waters draining the study areas of the NWS Concord during the spring flooding of 1986 had some impact on NWS wetlands, but probably caused only a minimal increase in environmental impact on the aquatic ecosystem of Suisun Bay. #### 2.5.5 Kiln Site Sampling The Kiln site was subjected to an intense sampling effort. Both surface and subsurface samples were collected. These data are presented in Tables 2.5-A6, A11, A16, A26 and A31. Sample locations are shown in Figure 8.* The analysis of variance procedure was used to analyze the data. Statistical differences were determined using the Newman-Keuls method (Winer 1971). Soil contaminated with As and Pb is confined mainly to a depth of 0 to 1 ft (Table 2.5-A32). Elevated soil Zn and Cd was observed to a depth of 3 ft in a limited number of locations. Further discussion of these results can be found in Cullinane et al. 1988. # 2.5.6 Report of Geotechnical Fieldwork at the Kiln Site, Naval Weapons Station, Concord A field party from the Geotechnical Laboratory, WES, installed three water sampling wells at the NWS, Concord, California for the Naval ^{*}Located in Lee, Cullinane, and O'Neil 1988. Facilities Engineering Command, Western Division. #### 2.5.6.1 Location of Wells The wells are located around the north side of the bare ground and rubble pile in Parcel 572 known as the Kiln Site. Well separation is less than 200 ft, and the distance to the rubble pile is about 100 ft. All wells are on Navy property but within 100 ft of the railroad property line. The positions of wells are shown in Figure 2.5-5. The locations for wells were chosen primarily to obtain the maximum sector of possible ground-water flow paths from the known source of contamination in and around the rubble pile. Private property was excluded at this preliminary stage of sampling. It was axiomatic that any discovery of contamination in the ground-water would be viewed as preliminary and would almost certainly lead to a comprehensive and sophisticated study of ground-water contamination. By installing wells near the rubble pile, the chance of intercepting ground-water contamination from the pile was improved, as was the accessibility for the heavy drilling truck, a question of great concern before entering the site. Early visits and drilling at a site 1,600 ft to the south suggested that equipment might seriously mire down in the damp gumbo adjacent to the wetlands. A skid rig was brought to the site as a contingency but was not needed, since mobility improved with the onset of dry weather. The site was entered from the east via the west gate from the Allied Corporation Bay Point Works. A staging area was established inside Navy property. Well 1 was located at the west to minimize disturbance of the site. The drill rig backed directly to that location and subsequently drilled wells 2 and 3 as it returned eastward to the staging area. The path followed was mostly on grass north of the bare area. Plywood sheets were used under the truck upon approaching the location for well 1 to improve mobility and to protect grass from possible rutting. #### 2.5.6.2 Drilling The procedure followed on all wells was the same except for depth. Wells 2 and 3 were shallower by 5 ft than well 1, since it had been found in drilling well 1 that the shallowest aquifer was fully penetrated at a depth of 15 ft. Detailed descriptions of wells 1, 2 and 3 are given in Figures 2.5-6, 2.5-7, and 2.5-8, respectively. "Aquifer" is used in a loose sense to distinguish a stratum that can transmit appreciable water as opposed to one, such as a clay-rich layer, that cannot. The scope of work for this study had generalized the possible conditions without the benefit of subsurface information. It was thought at that preliminary stage that the surface layer at the Kiln Site might be saturated, granular debris, so that the upper aquifer would be shallow and unconfined. Since the three sampling wells actually started in clay-rich soil at the surface, the anticipated conditions are irrelevant. It was still possible to follow the original intention of penetrating and sampling only the upper aquifer and bottoming in a low-permeability clay-rich layer. It was considered important that the wells not enter an aquifer below the shallowest. Figure 2.5-5. Location of ground-water wells, NWS Concord Figure 2.5-6. Description of ground-water well 1 Figure 2.5-7. Description of ground-water well 2 Figure 2.5-8. Description of ground-water well 3 constraint was satisfied, since even well 1 bottomed in hard, relatively dry, clayey silt. The steps in drilling the wells followed reasonably closely to those envisioned before the work began and were as follows: - a. Augered with 10-in. bit to ft depth. - b. Set 8-in-diameter steel calling and grouted in place, flush with ground. This grouted casing isolates near-surface contamination. - c. Advanced below 2-ft depth using 6-in. hollow-stem auger. - d. Sampled soil continuously through auger stem. #### 2.5.6.3 Well Construction The steps in construction of the sampling well were as follows: - a. Upon reaching final depth, added sand to 1 ft above bottom. Sand is 16 x 40 washed sand, available in bags. - b. Placed 2-in. PVC screen and riser in hole through the stem and seated on sand bottom. Screen opening is 0.020 in. - c. Raised auger around screen and riser while at the same time adding sand to fill space developed below. Tamped sand frequently with riser. Sections of auger were removed intermittently. - d. Raised sand level as in step c to 1 ft above screen. - e. Added bentonite pellets to level 2 ft above sand pack. - f. Grouted above bentonite plug to surface. - g. Added extension of 8-in. protective steel casing to 2 ft above ground surface and grouted around outside of joint and flanges. The wells were developed by removing water with a gasoline-driven pump. Total volumes removed were 25, 15, and 15 gal from well 1, 2, and 3, respectively, to accomplish clarification of water from yellowish brown and translucent to a slightly cloudy but otherwise transparent condition. Flow of pump or ground-water rate ranged roughly between 0.2 and 0.4 gal/min during pumping. #### 2.5.6.4 Health and Safety Plan Operations at the Kiln Site were conducted according to a health and safety plan prepared especially for this investigation by technical, supervisory, and administrative personnel of the WES. The primary concerns were for health and safety of the field party. Other concerns were with safeguarding against disturbance of the site and its fauna and flora. Special attention was directed to the handling and disposal of materials brought from depth to the surface, and all water and cuttings taken from the holes were handled and retained as hazardous material pending clearance through chemical analysis. Soil and water collected during well installation and development were chemically analyzed to determine their hazardous nature. Results of these tests (Table 2.5-D13) indicated that the soil was not hazardous and could be disposed of in an ordinary landfill. The collected ground-water samples contained metals above drinking water quality standards and were disposed of into a sanitary sewer to protect water bodies associated with the Kiln Site on NWS Concord. #### 2.5.6.5 Summary Observations Salient observations deserving emphasis are as follows: - a. All three holes appear to penetrate only natural strata from the grassy surface down. No fill or slope-wash from the rubble pile was encountered. - b. The aquifer is at about the same position in all holes and sandwiched between relatively dry, clayey silt beds of low permeability. - c. The aquifer is confined under a piezometric head, and water rose a few feet in all holes after first being encountered. - d. The upper low-permeabililty layer is more than 8 ft thick. This layer presents a barrier against leakage from surficial contamination in the aquifer unless the layer has been deeply excavated. - 2.5.7 Ground-water Sampling at the Kiln Site, Naval Weapons Station, Concord Ground-water sampling of the monitoring wells and drums of water at the Kiln site and background well was performed on 12 May 1987. Sampling was conducted by R. Shafer (WES), P. Lacey (EMCON), and C. Schwab (Navy). A background well located about 400 feet north of Port Chicago Highway was sampled first (Lutton, Bennett, and McAneny 1987). This well was installed as a part of another study, but is located appropriately for use in this study. The 5-ft-long 2-in. PVC screen is positioned in a said aquifer, and 10 ft below the piezometric surface located at 39 ft. Prior to sampling, 10 gal of water was bailed from the well. The well water cleared up after approximately 5 gal had been removed. Five additional gallons of
water was removed before sampling was conducted. Mr. Lacey concurred that a sample representative of the ground water could be obtained at this point. Prior to sampling, a distilled water field blank was obtained by placing distilled water (supplied by EMCON) in the Teflon bailer and glass sample make-up jar. The field blank was then analyzed for pH, conductivity, and temperature using EMCON's instrument. The sample was split (two subsamples for Navy, one subsample for EMCON) and preserved with nitric acid to a pH below 2.0. The background well was then sampled using the teflon bailer and nylon rope. Approximately 0.75 gal of water was placed into the glass gallon make-up jar from the well. Measurements were taken for pH, conductivity, and temperature by Mr. Lacey. Unfiltered subsample splits were then made. The remaining sample was filtered using a 0.45-micron filter supplied by EMCON. Filtered subsample splits were made, and all subsamples were preserved with nitric acid to a pH below 2.0. The results of the field measurements are presented in Table 2.5-D12. Monitoring well KS-1 was sampled next. Similar procedures were followed for all three wells at the Kiln site. The wells were bailed, allowed to recover, and bailed again until what was considered a representative sample could be obtained. The bailing water was placed in a drum onsite. Approximately 10, 8, and 8 gal of water were removed from KS-1, KS-2, and KS-3, respectively. The sample was then removed from the well with the Teflon bailer and placed in the glass sample make-up jar. Measurements were taken for pH, conductivity and temperature (Table 2.5-D12). Unfiltered subsamples were made and the remaining sample was filtered through a 0.45 micron filter. Filtered subsamples were then made, and all samples were preserved with nitric acid to a pH below 2.0. Duplicate split subsamples were made for the Navy for all wells except KS-3. After sampling each well, the Teflon bailer, glass sample make-up jar, and filtering apparatus were rinsed with distilled water. Before obtaining each sample, the make-up jar and filtering apparatus were sample-rinsed with water from the monitoring well being sampled. Water levels were measured prior to bailing each well. These measurements are presented in Table 2.5-D12. Samples were taken from two drums located onsite. These drums contained water from developing the wells at the Kiln site on 2 April 1987 (see Section 2.5.6.3) and the bailing water that was removed from wells KS-1, KS-2, and KS-3 prior to sampling on 12 May 1987. Mr. Lacey indicated that EMCON would not require a split of these samples. The samples from the two drums were not filtered. These samples were preserved with nitric acid. The subsamples for the Navy were placed in a locked cooler. A chain-of-custody was initiated upon completion of the sampling effort. The samples were transported to WES and turned over to Mr. R. Price along with the chain-of-custody forms on 14 May 1987. #### 2.5.8 Wetland Delineation at Naval Weapons Station, Concord As part of an ongoing cooperative agreement between the US Naval Facilities Engineering Command, Western Division, and the WES, the Environmental Laboratory (EL) was asked to conduct a wetland delineation on Parcels 571, 572, 573, 574, 575, 576, 579D, and 581 on the NWS Concord. During the week of 3-7 November 1986, Messrs. C. J. Newling and R. Theriot traveled to the site to conduct a wetland delineation and collect the necessary field data. Various portions of this field work were observed by Drs. J. S. Wakeley and C. R. Lee and Ms. L. J. O'Neil, all of £L, who were simultaneously conducting field-work at NWS Concord, as well as Dr. M. Josselyn of San Francisco State University and Mr. J. M. Robertson of the US Navy Office of the General Counsel. #### 2.5.8.1 Site Description and Methods Wetland delineations were conducted on four NWS Concord areas generally located south of Suisun Bay as outlined in Figure 2.* site descriptions are given in Lee et al. (1986). (Figures 29, 42, and 53* were developed from figures appearing in Lee et al. 1986). The first area (KS/AB/AA) included tidally influenced estuarine emergent marsh on Parcel 572. The second area (K-2/G-1/576) included palustrine robust emergent marsh and segments of a channelized stream on Parcels 573, 574, 575 and The third area (ES) included a channelized stream on Parcel 579D. The fourth area (CP) included palustrine robust emergent marsh on Parcel 581. Physical access was obtained to the first three areas and data were collected directly onsite. Delineation for the fourth area was based on data collected by visual observation from Port Chicago Highway and review of aerial photographs and vegetation mapping performed by Harvey and Stanley Associates, Inc. (Figure 53* was based on a figure from the Harvey and Stanley Associates, Inc., report "Background Information for Section 7 Consultation at Concord Naval Weapons Station" dated 25 November 1986.) Methods and procedures for delineation were as described in Environmental Laboratory (1987). On the KS/AB/AA and K-2/G-1/576 areas, "comprehensive" techniques were employed. In addition, wetland and nonwetland boundary stakes were placed and later surveyed by an EL team led by Mr. J. G. Skogerboe. "Routine" techniques were used on the ES and CP areas. In mapping wetlands, delineations stopped at parcel boundaries even though wetlands extended beyond those boundaries in some cases. #### 2.5.8.2 Results Data collected for the KS/AB/AA area are provided in Appendix A.** When correlated with the surveyed boundary stake positions, the data supported delineating the wetland boundary along the 4.0 foot contour line and tying into lower elevation property boundaries as indicated in Figure 29. Wetlands on the K-2/G-1/576 area were largely separated from tidal influence and occurred on a landscape with falling topography from a segment of channelized stream on the highest (east) side of the site to a broad fan of robust emergent marsh on the lowest (west) side of the site. The wetlands on the west side of the site were immediately adjacent to a tidally influenced segment of stream just off the K-2 parcel. Historically, the wetlands on this site appear to have been connected more directly to the intertidal wetlands to the north prior to construction of the railroad right-of-way that separates them. More recently, construction of the railroad right-of-way as well as stream channelization may also have had some effect on wetland plant succession by increasing freshwater influence on the site. Data collected from this area are provided in Appendix B. Plots falling at wetland boundaries were staked, and then ^{*}Located in Lee, Cullinane, and O'Neil 1988. ^{**}Appendixes A, B, and C are not part of this document. surveyed for mapping purposes. The wetland boundary is indicated in Figure 42. The wetlands on the ES area followed a channelized stream course immediately adjacent to the property boundary with the Chemical and Pigment plant (C and P/ESI area, Figure 42). The streambank slopes in most segments were very steep, with standing water or saturation to the surface in the streambed and a dense cover of vegetation dominated by Typha latifolia. Outside the distinct streambanks, wetland indicators quickly disappeared. Thus, the rather distinct boundaries of the channelized stream could be mapped as wetland for the entire course along this parcel. The mean wetland width was 11 ft. Data collected from the ES area are provided in Appendix C. The wetland boundary is indicated in Figure 42. The wetlands on the CP area were observed from Port Chicago Highway. Based on experience gained from similar wetlands on the NWS Concord property, the plant communities observed, and the steepness of slope observed, two criteria were used to delineate the wetland boundary: the 6.0-ft contour elevation and the presence of a plant community dominated by either Typha sp. or Scirpus sp. The wetland boundary for the CP area is indicated in Figure 53. #### 2.5.9 References Cullinane, M. J., Jr., et al. 1988. "Feasibility Study of Contamination Remediation at Naval Weapons Station, Concord, California; Volume I: Remedial Action Alternatives," Miscellaneous Paper EL-86-3, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. Lawrence, D. R., and Scott, G. I. 1982. The Determination and Use of Condition Index of Oysters. Estuaries, Vol. 5, No. 1, pp 23-27. Lee, C. R., et al. 1985. "Decisionmaking Framework for Management of Dredged Material: Application to Commencement Bay, Washington," US Army Engineer District, Seattle, Seattle, Wash. Luoma, S. N., Cascos, P. V., and Dagovicz. R. M. 1984. "Trace Metals in Suisun Bay, California: A Preliminary Report," US Geological Survey, Water-Resources Investigations Report No. 84-4170, Sacramento, Calif. Lutton, R. J., Bennett, R. D., and McAneny, C. C. 1987. "Suitability of Sites for Hazardous Waste Disposal, Concord Naval Weapons Station, Concord, California." Miscellaneous Paper GL-87-28, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. Rodgers, J. H., Jr., Cherry, D. S., Garney, K. L., Dickson, K. L., and Cairns, J. Jr. 1980. "Comparison of Heavy Metal Interactions in Acute and Artificial Stream Bioassay Techniques for the Asiatic (Corbicula fluminae)," Aquatic Toxicology: Proceedings of the Third Annual Symposium on Aquatic Toxicology, New Orleans, La. Winer, B. J. 1971. <u>Statistical Principles in Experimental Design</u>, 2d ed., McGraw-Hill, New York. #### 2.5.10 Sample Identification and Variable Description #### 2.5.10.1 Tables A1-A32 Sample ID and Variable Description Tables 2.5-A1-A31 present the soil analysis data. The samples appearing in Tables A1, A6, A11, A16, and A21 were collected in June and July 1986. Samples listed in Table A26 were collected in December 1986. The samples listed in Table A31 were collected in March 1987. Sample types SC are 0" - 6" surface samples.
Sample types ST are 0" - 6" stream samples. Samples AASTW124B1D and AASTW124B2D go to a depth of 4 ft. See the variable description section below for further discussion of sample types. #### Variable Description #### Unit AS, CD, CU, PB, ZN, SE mg/kg or parts per million(ppm) WWT AS, WWT CD. dry weight basis WWT CU, WWT PB, WWT ZN, WWT SE mg/kg or parts per million(ppm) wet weight basis MPSOLID, SOLID Percent solids DI_WT,ACT_WT DEPTH Grams Feet #### Example Key ID No.: AA SCW5T2R1 Nitric acid digestion procedure used for total metal analysis AA - Sample site area AA: Allied A AB: Allied B BK: Remote reference site CP: Coke pile site ES: ESI G1: G-1 Getty K2: K-2 KS: Kiln site SC - Sample type SC: Soil core ST: Soil core from a stream GT: Surface sample gritty material RB: Surface sample red brick YB: Surface sample yellow brick ``` W5T2R1 - Specific WES sample site location Label for site 5T2 R1, R2, R3 Triplicate samples Sample IDs in Tables A1 and A6 include D1-D4. D1-D4 refer to the depth of core: 0' - 1' D1 1' - \overline{2'} D2 2' - 3' D3 D4 3' - 4' Sample IDs in Table A26 include D1-D4. D1-D4 refer to the depth of core: 0" - 6" D1 D2 6" - 12" 12" - 24" D3 D4 24" - 36" Sample IDs in Table A31 include D1-D6. D1-D6 refer to the depth of core: 0' - 1' D1 D2 1' - 2' D3 2' - 3' D4 3' - 4' D5 4' - 5' D6 5' - 6' -1,S1 Split sample ``` A Sample taken June 24, 1986 B Sample taken June 25, 1986 C Resample previous contractor site | WZ_ZW | 22,211111000000000000000000000000000000 | |---------|--| | WWT_PB | 2812488244442241118666611119222222222222222222222222222 | | WWT CU | 1135,500,000,000,000,000,000,000,000,000,0 | | WWT_CD | | | WT_AS | 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | ACT_WT | | | DI_WT | 80844441404448809988441490496888888449449649646464 | | MPSOLID | 0822222228428428466644444444444444444444 | | NZ | 2128
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
20158
201 | | PB | 24000000000000000000000000000000000000 | | 8 | 125.82.7.33.1.00.1.1.98.94.88.95.5.1.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3. | | 8 | 00000000000000000000000000000000000000 | | AS | 21112233138421010900283118823323020202020
211128023233384201090028842626369573202020
2111203233338632303034442606060606060606060606060606060606060 | | OBS ID | 1 AASCWSR1 2 AASCWSR2 3 AASCWSR2 5 AASCWST2R1 5 AASCWST2R1 6 AASCWST2R3 6 AASCWST2R3 6 AASCWST2R3 6 AASCWST2R3 6 AASCWST2R3 6 AASCWSTR124 1 AASTW1244 5 AASTW1244 6 AASTW1244 6 AASTW1248R1 1 AASTW1248R1 1 AASTW1248R1 2 AASTW1248B1D2 3 AASTW124B1D2 6 AASTW124B1D3 6 AASTW124B1D4R3 7 AASTW124B1D4R3 8 AASTW124B1D4R3 9 AASTW124B1D4R3 1 AASTW5R1R1 7 AASTW5R1R1 7 AASTW6R1R1 | | \sim | | | | PB | 0.225
0.207
0.220 | |----------------------|----|---| | Analysis | 8 | 0000 | | Table 2.5-A2 Blank A | 8 | 000.00000000000000000000000000000000000 | | Table 2.5 | AS | 0.000.0005 | | | Ð | BLANK-R1
BLANK-R2
BLANK-R3 | | | | | OBS ZN 0.263 0.693 0.531 Table 2.5-A3 Blank Analysis Summary | C.V. | 0.000
46.398
0.000
3.275
3.813 | |-----------------------|--| | VARIANCE | 0.0000
0.0000
0.0472 | | MNS | 0.0150
0.0036
0.0900
0.6520
1.4870 | | STD ERROR
OF MEAN | 0.0000
0.0000
0.0054
0.1254 | | MAXIMUM
VALUE | 0.0050
0.0017
0.2250
0.6930 | | MINIMUM
VALUE | 0.0050
0.0006
0.2070
0.2630 | | STANDARD
DEVLATION | 0.0000
0.0006
0.0093
0.2172 | | MEAN | 0.0050
0.0012
0.2173
0.4957 | | z | നനനന | | VARIABLE | 88888 | Table 2.5-A4 NBS River Sediment Analysis | ACT_VT | 1111 | |--------|----------------------------------| | DI VT | 1.000 | | B | 1598.6
1405.2
1415.2 | | PB | 978.2
1004.1
1024.1 | | 8 | 121.88
116.00
124.00 | | 8 | 11.73
10.84
11.74 | | AS | 38.81
38.25
38.35 | | ΙΩ | STDRS-R1
STDRS-R2
STDRS-R3 | | OBS | 426 | Table 2.5-A5 NBS River Sediment Analysis Summary | VARIABLE | z | MEAN | STANDARD
DEVIATION | MINIMUM
VALUE | MAXIMUM
VALUE | STD ERROR
OF MEAN | M OS | VARIANCE | C.V. | |---------------|------------------|--|---|--|--|---|---|--|---| | SBBBBBP
PA | നനനനനന | 38.470
11.436
120.626
1002.142
1473.015
1.000 | 0.299
0.516
4.144
23.054
108.888
0.001 |
38.250
10.840
116.000
978.157
1405.215
1.000
1.000 | 38.811
11.740
124.000
1024.135
1598.616
1.001 | 0.173
2.298
113.393
62.867
0.000
0.000 | 115.411
34.308
361.878
3006.427
4419.046
3.001 | 0.090
0.267
17.176
531.476
1856.694
0.000 | 0.778
4.514
3.436
2.300
7.332
0.058
0.058 | | *Stan | *Standards | | | | | | | | | | NBS | NBS River Sedime | Sediment Ana] | ent Analysis Values | | | | | | | | AS | | | | 0.99 | | | | | | | 8 | | | | 8.7 | 11.7 | | | | | | 8 | | | | 0.06 | 128.0 | | | | | | PB | | | | 0.989 | 742.0 | | | | | | ĸ | | | | 1550.0 | 1890.0 | | | | | | WT_ZN | 20222
20222
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
202526
2025 | |---------|--| | WWT_PB | 11 | | WAT CU | 31
34
34
34
34
34
34
34
34
34
34
34
34
34 | | WWT_CD | 02421112000LL42 | | WVT AS | 8.1.3.0.4.3.2.4.3.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2 | | ACT VI | 011111111111111111111111111111111111111 | | IN_IO | 8252223655555555555555555555555555555555 | | MPSOLID | 24 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W | | KZ | 2025288833
2025288833
2025288833
2025288833
2025288832
2025288832
2025288832
2025288832
2025288832
2025288832
2025288832
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
20252883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
202528883
2 | | PB | 20, 44, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 | | 5 |
1200201
200201
200201
200201
200201
200201
200201
20020202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200202
200 | | 8 | 87-1488-4420-11-1880-8820-884-10-10-10-10-10-10-10-10-10-10-10-10-10- | | AS | 441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1441
1 | | OBS ID | AASCW16U3 2 AASCW16U3 3 AASCW16U3 5 AASCW6S1 6 AASCW6S2 6 AASCW6S2 6 AASCW124B2D1 8 BASCW1332R3 10 BKSCW1332R3 11 BKSCW1332R3 12 CPSCW26F3 12 CPSCW26F3 13 CPSCW26F3 14 CPSCW26F3 15 CPSCW29E1 16 CPSCW29E1 17 CPSCW29E1 18 CPSCW29E1 18 CPSCW29E1 19 CPSCW29E1 10 CPSCW29E1 11 ESSCW13H1 11 ESSCW13K2R1 12 CPSCW13H1 13 ESSCW13K2R1 14 G1SCW13K2R1 15 G1SCW13K2R1 16 ESSCW13K2R1 16 ESSCW13K2R1 17 ESSCW13K2R1 18 ESSCW13K2R1 19 G1SCW10N4 19 G1SCW10N1 10 G1SCW1 10 G1SCW1 10 G1SCW1 10 | | WYT_ZN | 1262.5 | 2/081.4
325.9 | 253.7 | 1520.9 | 1324.2 | 125.3 | 579.7 | 3951.5 | 409.4 | 223
399.8 | 180.6 | 2968.7 | 9084.6 | 147.6 | 526.4 | 842.7 | |-----------|----------------------------|------------------|---------------|---------------------------------|----------------------------|-------|--------------|-----------|----------|----------------------|----------|----------|----------|----------|-----------|------------------------| | WWT_PB | 168.7 | 3610.3
239.5 | 82.0
79.9 | 249.2 | 295.9 | 46.1 | 193.2 | 629.9 | 56.3 | 33.7 | 53.0 | 227.4 | 1051.2 | 82.7 | 394.3 | 281.0
100.3 | | WAT_CU | 25.30 | 441.84 | 33.24 | 56.58 | | | | | | | | | | | | 157.08 | | WVT_CD | 3.67 | 36.00
0.70 | 0.51 | ,
,
,
,
,
,
, | 2.84
0.79 | 0.45 | 2.24 | 7.26 | 1.89 | 0.41
9.69 | 0.46 | 16.17 | 23.31 | 0.63 | 1.59 | .0
80.0 | | WWT_AS W | 3.73 | 11.36
2.35 | 2.72 | 3.45 | 3.15 | 2.80 | 6.30
1.00 | 17.35 | 1.96 | 39.57 | 3.57 | 2.88 | ٠٠
86 | 4.58 | 7.98 | 17.12 | | ACT_WT W | 1.01 |
 | -i-
88 | 1.00 | 38 | 1.01 | .i.
88 | .0 | 1.04 | 700 | 1.03 | 1.02 | 88 | 1- | 1.02 | 1.01 | | DI_WT A | 1.06 | 1.06 | 1.07 | 1.0 | 1.0 | 1.07 | 1.03 | 1.05 | 1.63 | 7.89
40 | 1.58 | 2.17 | 1.93 | 1.07 | 1.15 | 1.06 | | MPSOLID I | 95.21
92.05 | 89.64
94.28 | • | | | | • | | | | | • | • | | | 94.85
89.31 | | ZZ
W | 1326.0 | 30210.9 | 269.1 | | | | | | | | | | | | | 317.4 | | PB | 177.2 | | | | | | | | | | | | | | | | | 5 | 40.33 | 492.90 | 35.26 | 58.63 | 36.50 | 25.59 | 84.27 | 110.82 | 29.05 | 65.09
93.09 | 80.03 | 238.37 | 920.04 | 39.04 | 108.02 | 165.60 | | 8 | 3.85 | 40.18
0.74 | 0.54 | 3.55 | 7.0 | 0.47 | 2.30 | 7.65 | 2.96 | 9,0 | 0.70 | 34.23 | 44.82 | 0.63 | 1.78 | 6.41 | | AS | 3.91 | | • | | | | 9.48 | 18.29 | 3.06 | 4.75 | 5.48 | 6.11 | 11.51 | 70.0 | 8.94 | 18.05
9.78 | | 日 | G1SCV12M3-1
G1SCV12M4-1 | 11-1
14-1 | G1SCV12N4-1R2 | 5.7 | G1SCV13M3-1
G1SCV14M2-1 | 2 | 45 | K2SCV10P2 | K2SCV3R3 | K2SCV4P2
K2SCV403 | K2SCV5P1 | K2SCV5P2 | K2SCV6P2 | K2SCW0U1 | KSSCW10R3 | KSSCV10R4
KSSCV12R1 | Table 2.5-A7 Blank Analysis | | | | | • | | | |----------|--|---------|---|---------|---|---------| | OBS | ID | AS | 8 | 55 | PB | Ø | | -10m4s9p | NWSBLANK.R10
NWSBLANK.R4
NWSBLANK.R5
NWSBLANK.R6
NWSBLANK.R7
NWSBLANK.R7
NWSBLANK.R9 | 0000000 | 0.0001
0.00016
0.0013
0.0013
0.0013 | 0000000 | 000000000000000000000000000000000000000 | 0000000 | Table 2.5-A8 Blank Analysis Summary | c.v. | 0.000
43.033
0.000
249.259
76.932 | |-----------------------|--| | VARIANCE | 000000000000000000000000000000000000000 | | SUM | 0.0350
0.0084
0.2100
0.1610
2.3490 | | STD ERROR
OF MEAN | 0.0000
0.0002
0.0217
0.0976 | | MAXIMUM
VALUE | 0.0050
0.0016
0.1530
0.8790 | | MINIMUM
VALUE | 0.0050
0.0001
0.0300
0.0010
0.1100 | | STANDARD
DEVIATION | 0.0000
0.00005
0.0573
0.2582 | | MEAN | 0.0050
0.0012
0.0300
0.0230
0.3356 | | Z | トレトレト | | VARIABLE | AS
CCD
CCD
SN
SN | Table 2.5-A9 NBS River Sediment Analysis | | A.S. | | | PB PB | | DI W | ACT V | |----------|----------------|----------------|--------|----------------|------------------|-------|-----------------------| | 37 | .79 | 11.51 | 116.65 | 686.8 | 1683.2 | 1.003 | | | ပိုင္တာလ | 37.13
35.74 | 11.67
11.85 | 118.79 | 823.9
826.4 | 1777.6
1663.2 | 988 |
886
898
898 | | 33. | ম | 11.82 | 122.76 | 853.7 | 1747.7 | 1.006 | 1.006 | Table 2.5-A10 NBS River Sediment Analysis Summary | c.v. | 4.308
1.245
2.136
9.917
2.865
0.164 | | | | | | | | |-----------------------|---|------------|------------------------|------|------|-------|-------|--------| | VARLANCE |
2.410
0.021
6.549
5969.896
2403.131
0.000 | | | | | | | | | SUM | 180.189
58.668
599.122
3895.417
8554.810
5.024 | | | | | | | | | STD ERROR
OF MEAN | 0.694
0.065
1.145
34.554
21.923
0.001 | | | | | | | | | MAXIMUM
VALUE | 37.787
11.854
122.763
853.728
1777.555
1.006 | | | | 11.7 | 128.0 | 742.0 | 1890.0 | | MINIMUM
VALUE | 33.748
11.505
116.50
686.790
1663.230
1.003 | | S | 0.99 | 8.7 | 0.06 | 0.989 | 1550.0 | | STANDARD
DEVIATION | 1.553
0.146
2.559
77.265
49.022
0.002 | | Analysis Values | | | | | | | MEAN | 36.038
11.734
119.824
779.083
1710.962
1.005 | | NBS River Sediment Ana | | | | | | | z | ഗസസസസസ | rds | iver | | | | | | | VARIABLE | AS
CD
CU
PB
ZN
ZN
DI WT
ACT WT | *Standards | NBS R | AS | СО | CU | PB | ZN | | 101
106 1
106 1
106 1
106 1
107 1
10 | |---| | ## 1201
1201
1201
1202
1202
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
1203
120 | | ### ### ### ### ### ### ### ### ### ## | | | | 11.22
12.22
13.28
14.22
14.22
15.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16.22
16 | | A 0110010110110110110110110111111111111 | | 1 | | MP | | 72
73
74
75
75
75
75
75
75
75
75
75
75 | | 280808 | | QU | | 80.000 www.u-10.0000000000000000000000000000000000 | | A | | AASCW10R2 AASCW10R2 AASCW10R2 AASCW10TR1 AASCW10TR1 AASCW12W1 AASCW12W1 AASCW12W2 AASCW14W1 AASCW16W2 AASC | | STANDERORS AND TOUR STANDERS OF THE | | | Tad | Table 2.5-ALZ | Blank | Analysis | | | |------|--|---------------|-------|----------|------|------| | OBS | Ω | AS | 8 | 8 | PB | Ŋ | | 1264 |
NWSBLANK.R11A
NWSBLANK.R12A
NWSBLANK.R17
NWSBLANK.R18 | 00000 | 0000 | 0000 | 0000 | 0000 | Table 2.5-A13 Blank Analysis Summary | ARIANCE C. | 0.0000 | |-------------------------|---| | SUM VARI | | | EROR SI | 0.0200
55 0.01100
44 0.02300 | | STD I | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | | JM MAXTMUP
3 VALUE | 00000 | | RD MINIMUN
ION VALUE | 0.0000 | | STANDARD
DEVIATION | 000000000000000000000000000000000000000 | | MEAN | 0.0000000000000000000000000000000000000 | | Z | 44444 | | VARIABLE | SEC SE | Table 2.5-A14 NBS Sediment Analysis 5 ACT_WT 0.9972 0.9923 0.9990 | | | | W S | | 20020000 | | ************************************** | | *************************************** | | | |-----|--|--------|---|--|---|---|---|---|--|--|--| | | | | | | | | | | | | V. POPURUK | | | | | | Table 2.5- | .5-A15 NBS | | Sediment Analysis Summary | mmary | | | | | | VARIABLE | z | MEAN | STANDARD
DEVIATION | MINIMUM
VALUE | MAXIMUM
VALUE | STD ERROR
OF MEAN | MUS | VARIANCE | c.v. | | | | SSE GOS SE CONTRACTOR CONTR | നനനനനന | 45.313
10.450
106.279
670.585
1683.852
0.996 | 2.619
65.1645
0.0022
0.0033
0.0033 | 42.593
10.289
101.660
654.752
1626.726
0.992 | 47.818
10.571
110.986
681.619
1755.956
0.999 | 1.512
0.084
2.693
88.119
0.002
0.002 | 135.938
31.349
318.838
2011.756
5051.555
2.989 | 6.861
0.021
21.751
197.740
4343.380
0.000 | 5.781
1.386
2.038
0.348
0.348
0.348 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | *Standards | lards | | | | | | | | | | | | NBS | River | NBS River Sediment Analysis Values | alysis Valı | Jes | | | | | | | | | AS | | | | 0.99 | | | | | | | | | 8 | | | | 8.7 | | 11.7 | | | | | | F | 8 | | | | 90.0 | 11. | 128.0 | | | | | | 118 | PB | | | | 686.0 | 77 | 742.0 | | | | | | 3 | NJ. | | | | 1550.0 | 185 | 1890.0 | | | | | | WT_ZN | 20000000000000000000000000000000000000 | |---------|--| | WWT_PB | 250 440 440 440 440 440 440 440 440 440 4 | | WIT CU | 559473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
579473118
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57947318
57 | | WIT CD | 01040000000000000011404000000011440040004011011 | | WWT_AS | 8082221899 085175
8082521899
08575
8082521896
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
808526
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
808526
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8085256
8 | | ACT_VT | | | D DI WT | 41111121111211111111111111111111111111 | | MPSOLID | 070703088889202088888864744449086444444602244444602244444602244444602244444602244444460224444446022444444602444444602444444460244444444 | | ĸ | 215.25.55.55.55.55.55.55.55.55.55.55.55.55 | | PB | 15. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12 | | 몽 | 1102448889450114488695144887514445670748868751448876114484876114487676144487676144487676144487676144487676144487676744887676744887676744887676744487676744887676744444444 | | 8 | 08-140000000000008-104000-001-0040000000000 | | AS | 5004441000 8000 8000 8000 8000 8000 8000 | | £ | AASCV10S1 AASCV11R1R1 AASCV11R1R2 AASCV12R3 AASCV12R1 AASCV12R1 AASCV12R1 AASCV12R1 AASCV16V3R1 AASCV16V3R1 AASCV16V3R1 AASCV16V3R1 CPSCV29E2R1 CPSCV29E2R1 CPSCV29E3R3 CPSCV29F3R2 CPSCV29F3R3 CPSCV29F3R3 CPSCV29F3R3 CPSCV29F3R3 CPSCV29F3R3 CPSCV29F3R3 CPSCV29F3R3 CPSCV30F4 CPSCV30F4 CPSCV30F4 CPSCV30F4 CPSCV30F4 CPSCV13V3 CPSCV13V3 CPSCV13V6 CISCV110N3 CISCV110N3 CISCV12M6 CISCV12M6 CISCV12M6 CISCV12M6 CISCV12M6 CISCV13M4 CISCV13M4 CISCV13M4 CISCV13M4 | | OBS | 44444444444444444444444444444444444444 | | _ | A CONTRACT OF THE PROPERTY OF A CANADA CANAD | | WT ZN | 44,4699
44,46194
45,5134
46,5135
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
46,513
4 | 3/0.0 | |----------|---|--------| | WWT_PB | 11170
9976
4184
14188
1225
1225
1373
1373
1373
1373
1373
1373
1373
137 | | | WITCH |
1255.59
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
1355.55
135 | | | WITCD | 27.72
27.72
27.72
27.72
27.73
27.73
27.73
27.73 | 3 | | r wyt as | 4444082400444044244846
28609644888668481818 | | | T ACT_VT | 4444440044440440044
4444440044440440044 | 10.1 | | TV_IG GI | | | | MPSOLID | 28888888888888888888888888888888888888 | ,
X | | K | 20759.15
5079.23
5079.23
5033.77
5033.77
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017.33
5017. | 7.07 | | PB | 122 22 22 22 22 22 22 22 22 22 22 22 22 | | | CG | 65.50
110.61
114.81
107.63
1153.37
134.82
140.66
140.66
140.66
168.89
168.89
168.89
103.33 | 74.7 | | 8 | 380.7.5.000.3.36.00.00.3.36.00.00.3.36.00.30.00.0 | | | AS |
444440620111
500802020111
5008020202011
50080202020
500802020
500802020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
5008020
50080
5008020
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50080
50 | 7 | | QI | G1SCV13M5R3
G1SCV14L2R1
G1SCV14L2R3
G1SCV14L2R3
G1SCV14K13
G1SCV14K13
G1SCV14K13
G1SCV3P3
K2SCV3P3
K2SCV4P1
K2SCV4P1
K2SCV4P1
K2SCV4P1
K2SCV4P1
K2SCV4P1
K2SCV4P1
K2SCV4P1
K2SCV6P1
K2SCV6P1 | X | Table 2.5-A17 Blank Analysis | | labi | labie 2.3-Ai/ blank | | Analysis | | | |------------|--|---------------------|---|----------|-------|------| | BS | Ð | AS | 8 | 8 | PB | NZ. | | 1264 | NVSBLANK.R11B
NVSBLANK.R12B
NVSBLANK.R13
NVSBLANK.R14 | 00000 | 000000000000000000000000000000000000000 | 00000 | 00000 | 0000 | | ر م | NWSBLANK.R15 | 200 | | 000 | 35 | 0.29 | Table 2.5-A19 NBS Sediment Analysis | | ACT_VT | 1.0089
0.9989
1.0083
1.0050 | |---|--------|--| | | DI_VT | 1.0089
0.9989
1.0083
0.9937
1.0050 | | | ĸ | 1599.96
1651.02
1506.69
1609.34
1556.42 | | | PB | 505.3
1020.9
488.8
533.2
557.0 | | | 8 | 100.11
118.63
97.69
106.17
103.98 | | | 8 | 10.18
11.24
9.89
11.80
9.78 | | l | AS | 36.97
38.29
37.89
40.51
45.12 | | | Ωī | NVSSTDRS.RS10B
NVSSTDRS.RS11
NVSSTDRS.RS12
NVSSTDRS.RS13
NVSSTDRS.RS14 | Table 2.5-A20 NBS Sediment Analysis Summary | C.V. | 8.226
8.447
7.730
36.241
3.474
0.650 | | | | | | | | |-----------------------|--|------------|------------------------------------|------|------|-------|-------|--------| | VARIANCE | 10.695
0.798
0.798
66.267
50656.563
3030.630
0.000 | | | | | | | | | SUM | 198.778
52.890
526.578
3105.193
7923.428
5.015 | | | | | | | | | STD ERKOR
OF MEAN | 1.463
0.463
3.641
100.654
24.620
0.003 | | | | | | | | | MAXIMUM
VALUE | 45.124
11.799
118.630
1020.933
1651.016
1.009 | | | | 11.7 | 128.0 | 742.0 | 1890.0 | | MINIMUM
VALUE | 36.971
9.776
97.689
488.753
1506.694
0.994 | | es | 0.99 | 8.7 | 0.06 | 0.989 | 1550.0 | | STANDARD
DEVIATION | 3.270
0.894
8.140
225.070
55.051
0.007 | | NBS River Sediment Analysis Values | | | | | | | MEAN | 39.756
10.578
105.316
621.039
1584.686
1.003 | | Sediment Ar | | | | | | | z | ഹസസസസസ | *Standards | River | | | | | | | VARIABLE | AS
CD
CU
CD
ZN
ZN
DI VT
ACT VT | *Sta | NBS 1 | AS | 8 | CG | PB | NZ | | | WWT_SE | 22.22.00000904.11.1.1.0.4.0.00000000000000000 | |-----------------|---------|--| | d July 1986 | SE | 22
22
22
22
23
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | | is (June and | ACT_WT | 000000000000000000000000000000000000000 | | Soil Analysis | DI_WT | 11111111111111111111111111111111111111 | | Table 2.5-A21 S | MPSOLID | 8999989899999999999988822434444
6744644196666666666666666666666666666666 | | | ID | CPSCV26F1 CPSCV26F1 CPSCV26F2 CPSCV26G3 CPSCV26G4 CPSCV26G5 CPSCV26G5 CPSCV27E1 CPSCV27E1 CPSCV29E10 CPSCV29E11R3 CPSCV29E1R2 CPSCV29E1R2 CPSCV29E2R1 CPSCV29E3 CPSCV29E3 CPSCV29E3 CPSCV29E3 CPSCV29E3R2 CPSCV29E3R2 CPSCV29E3R1 CPSCV29E3R1 CPSCV29E3R1 CPSCV29E3R1 CPSCV29E3R1 CPSCV29E3R1 CPSCV29E3R1 CPSCV29E3R1 CPSCV29E3R3 CPSCV29E3R1 CPSCV30F1 CPSCV30F1 CPSCV30F1 CPSCV30F4 CP | | | OBS | 10000000000000000000000000000000000000 | Table 2.5-A22 Blank Analysis | | — с | NWSDLAINK, KLIA | | |--|------------|-----------------|--| |--|------------|-----------------|--| Table 2.5-A23 Blank Analysis Summary STATES CONSISSION TO SOUTH PASSOCIAL DESCRIPTION OF THE SOUTH SOUT | ر.
م | Ċ | |-----------------------|--------| | VARIANCE | C | | MUS | 0,080 | | STD ERROR
OF MEAN | C | | MAXIMUM
VALUE | 0.0200 | | MINIMUM
VALUE | 0.0200 | | STANDARD
DEVIATION | 0 | | MEAN | 0.0200 | | Z | 7 | | VARIABLE | SE | | | | | | Table 2.5-A24 NBS Sediment Analysis | Sediment | Analysis | | |------|--|-------------------------|-------------------------|------| | OBS | ID | IV_IG | ACT_WT | S | | 1785 | NWSSTDRS-RS4
NWSSTDRS.RS10A
NWSSTDRS.RS12
NUSSTDRS PS15 | 1.003
0.997
1.008 | 1.003
0.997
1.008 | 0000 | Table 2.5-A25 NBS Sediment Analysis Summary | c.v. | 0.695 | | |-----------------------|-------------------------|------------| | VARIANCE | 0000 | | | SUM | 4.001
4.001
0.605 | | | STD ERROF
OF MEAN | 0.003
0.003
0.151 | | | MAXIMUM
VALUE | 1.008
1.008
0.605 | | | MINIMUM
VALUE | 0.992
0.992
0.000 | | | STANDARD
DEVIATION | 0.007 | | | MEAN | 1.000.151 | | | z | 444 | S | | VARIABLE | DI VT
ACT VT
SE _ | *Standards | This value is not certified because it is not based on the results of either a reference method
or two or more independent methods. Note: Se NBS Sediment Analysis Value | WYT ZN | 111719673888862113000644175170
11177166733482775113000698110888671171000678477517000678471700067871700006787170000678717000067871700006787170000678717000067871700006770000677000067700000067700000000 | |-------------|--| | WVT_PB | 11221123 882 211211221333333333333333333 | | WATCU | 22 22 22 22 22 22 22 22 22 22 22 22 22 | | WWT_CD | | | WWT_AS | 22 | | MPSOLID | 2444944488888882888888888882282222222222 | | ZN | 223378
223378
223378
223378
223378
223378
223378
223378
223378
223378
223378
223378
223378
223378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378
233378 | | PB | 110040448000000000000000000000000000000 | | 23 | 828894008421424 22 22 22 22 22 22 22 22 22 22 22 22 | | 8 | worto40nwrosi44nimo4mo600nmmno24rmo1044ninumum4no440 eero64nimona40mrocommina6mina6mina6mina6mina6mina6mina6mina | | AS |
01
0201
01
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202
0202 | | ID | AASCVI 6U5 AASCVI 6U6 AASCVI 6U6 AASCVI 6U6 AASCVI 6U6 ABSCVI 502 ABSCVI 552 ABSCVI 553 ABSCVI 553 ABSCVI 553 ABSCVI 553 ASCVI 553 ASCVI 001D2R1 KSSCVI 001D2R2 KSSCVI 001D2R3 KSSCVI 001D2R3 KSSCVI 002D2R1 002D3 002D4 KSSCVI 002D4 KSSCVI 002D4 KSSCVI 002D4 KSSCVI 002D1 KSSCVI 002D1 KSSCVI 002D1 KSSCVI 002D1 KSSCVI 101D2 KSSCVI 101D2 KSSCVI 101D2 KSSCVI 102D1 | | 0 BS | 44444444444444444444444444444444444444 | | WT_ZN | 1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000 | 11200
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10 | ۲, | |---------
---|--|----------| | WWT_PB | | 5
5
5
4
4
4
5
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | _ | | WWT_CU | , | 28712111142
287212111142
287212211114
287212211114
207212112114
207212114
207212114
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
207214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
207214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
207214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
207214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
207214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721214
20721 | | | WWT_CD | | ###################################### | | | WWT_AS | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 201184848411
500400000420000000000000000000000000000 | | | MPSOLID | 277
277
277
278
277
277
277
277
277
277 | 0179024888888888888888888888888888888888888 | | | ZN | H00HH00H0000H | 11001
7004
7004
7004
7004
7004
7004
7004 | . | | PB | 2014600040004000000000000000000000000000 | ,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | • | | n
D | 000000000000000000000000000000000000000 | 041
041
051
052
052
053
054
055
055
055
055
055
055
055 | | | 8 | 400000000000000000000000000000000000000 | 28841
887-8444441000448641410000000000000000000000 | • | | AS | \$1.00044m1.01.040m0 | 80 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 | • | | ID | SSSCW1102
SSSCW1103
SSSCW1103
SSSCW1103
SSSCW11103
SSSCW111R5
SSSCW111R5
SSSCW111R5
SSSCW111R5
SSSCW111R5 | KSSCW11R6D1 KSSCW11R6D2 KSSCW11R6D3 KSSCW11R6D3 KSSCW11R7D2 KSSCW11R7D2 KSSCW11R8D1 KSSCW11R8D2 KSSCW11R9D1 KSSCW11R9D2R3 KSSCW11R9D2R3 KSSCW11R9D2R3 KSSCW11R9D2R3 KSSCW11R9D3R3 KSSCW12Q1D3 KSSCW12Q1D3 KSSCW12Q1D3 KSSCW12Q1D4 KSSCW12Q1D4 KSSCW12Q1D4 KSSCW12Q1D4 KSSCW12R4D3R3 KSSCW12R4D3R3 KSSCW12R4D3R3 KSSCW12R4D3R3 KSSCW12R4D3R3 KSSCW12R4D3R3 KSSCW12R4D3R3 | SSCW12K4 | | | WY ZN | 22232
22232
245033 | 283
1015
391
225
246
548
694 | 1186
1345
1345
1904
200
230 | | 785
746
746
1357
26,6 | 22
3710
2079
1210
1339
1675
625 | 70
406
269
6299
964 | |--------|---------
--|--|--|---|--|---|--| | | WWT_PB | | | ٩ | ~4m0,4ma | 0001
0001
0001
0001
0001
0001
0001
000 | | wr.40wn | | | WWT_CU | 13.8
123.3
6.5
21.4
21.4 | 02843.
05843. | 105
582
587
505
505
505
505
505
505
505
505
505
50 | 222.6
222.6
222.6
25.6
25.6 | 2222
2333
2122
2122
242
242
242
242
242
242
242
2 | 200.75
173.27
173.27
173.27
173.27
173.27 | 20.4
25.3
31.5
14.0
14.0 | | | WVT_CD | | | | | 2000000 | | | | | WWT_AS | | 14.00m.0m0 | | | ,000,044,0
,000,000,000,000,000,000,000, | | | |) | MPSOLID | 90.
70.
70.
70. | 922.5 | 98889 | 8002088 | 00000000000000000000000000000000000000 | \$0.440
0.00 | 70000XX | | | NZ. | 49
22
40
311
117 | $a_{\mathcal{O}}$ | 11303
1472
12883
25283
25883
25083
25083 | 1 - 0 1 7 0 001 - 0 | 28889
2888
3988
3988
3988
3988
3988
3988 | 26.
3823
3823
2228
2648
2273
948 | | |)
1 | PB | | | | | 1,22
1,22
1,23
1,03
1,03
1,03
1,03
1,03
1,03
1,03
1,0 | V | 400000 | | 201 | CG | mown voc. | 222.
222.
225.
236. | ,
,
,
,
,
,
, | 7.004.00 | 20.02
20.03
20.03
20.03 | 7.182347.5 | | | | 8 | | | | 00000000000000000000000000000000000000 | | 200.2
1.2
1.2
1.2
1.2
1.2 | 2000034
20100034 | | | AS | | ,000,000,00c | · · · · · · · | | 477
5
5
6
7
7
7
7
7
7
7
7
7
7
7
7 | | | | | ΙD | SSCV12R5D
SSCV12R5D
SSCV12R5D
SSCV12R5D
SSCV12R6D
SSCV12R6D | SSCV12R6D3
SSCV12R6D4
SSCV1301D1
SSCV1301D3
SSCV1301D4
SSCV1301D4
SSCV1301D4 | SSCV13R1D
SSCV13R1D
SSCV13R1D
SSCV13R1D
SSCV13R1D
SSCV13R1D | SSCVIBRED
SSCVIBRED
SSCVIBRED
SSCVIBRED
SSCVIBRED
SSCVIBRED
SSCVIBRED | KSSCW1, K3D4
KSSCW13R4D1
KSSCW13R4D2
KSSCW13R4D4
KSSCW13R5D1
KSSCW13R5D1
KSSCW13R5D2 | SSC488301
SSC488301
SSC488301
SSC488303
SSC488303
SSC488304
SSC488401 | SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SSCURE
SS | | |)BS | 200
001
001
001 | 200000 | 112777 | 122
122
123
123
123 | 100
100
100
100
100
100
100
100
100
100 | 32654325 | 1730
1740
1747
1743
1743 | | | WT ZN | 985
1708
2159
2539
10820
10435
11378
867
753 | |--------------|---------
--| | | WWT_PB | 38875793
2.23375756
2.23375756
2.23875756
2.298100088 | | | WVT_CU | 2228
309.99
1001.100
116.39
116.99
116.99 | | | _ | 00700000000000000000000000000000000000 | | | | 11000000000000000000000000000000000000 | | Concluded) | MPSOLID | 7,000000000000000000000000000000000000 | | ^ | ZZ | 1378
3098
3098
119998
117748
12773
1368
1090 | | Table 2.5-AZ | PB | 2,44,000
10,500
10,500
10,500
10,500
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000 | | | B | 262.5
262.5
262.5
262.5
262.5
261.5
261.5
33.9 | | | C | 80000840000000000000000000000000000000 | | | AS | 44.70.00.00.00.00.00.00.00.00.00.00.00.00. | | | ID | KSSCW902D3
KSSCW902D4R1
KSSCW902D4R2
KSSCW903D1
KSSCW903D2
KSSCW903D4
KSSCW9R1D1
KSSCW9R1D2
KSSCW9R1D2
KSSCW9R1D3 | | | S | 5/2/280/0H28/410/0 | | PB | 005 | |--|---------------------| | | 00 | | 5 000000000000000000000000000000000000 | 0.0 | | cD 0.005
0.005 0.0 | 0.007 | | Table 2.5-A27 Blank Analysis AS CD 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.008 0.005 0.006 0.005 0.010 0.005 0.010 0.005 0.004 0.005 0.005 0.005 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 | 0.006 | | ID BLANKR1 BLANKR10 BLANKR11 BLANKR12 BLANKR14 BLANKR15 BLANKR15 BLANKR16 BLANKR16 BLANKR2 BLANKR3 BLANKR3 BLANKR3 BLANKR5 BLANKR5 BLANKR5 BLANKR5 BLANKR5 | BLANKR8
BI ANKR9 | | 0BS
110
111
112
113
113
114 | 16
17 | Table 2.5-A28 Blank Analysis Summary | c.v. | 7.351
58.011
2.411
33.640
35.774 | |-----------------------|--| | VARIANCE | 0.0000014
0.00001685
0.0000053
0.0000026 | | SUM | 0.0870
0.1203
0.5130
0.0260
0.6870 | | STD ERROR
OF MEAN | 0.00009125
0.00099563
0.00017647
0.00012478
0.00350636 | | MAXIMUM
VALUE | 0.0065
0.0152
0.0330
0.0820
0.0840 | | MINIMUM
VALUE | 0.00000
0.0010
0.0010
0.0010 | | STANDARD
DEVIATION | 0.00037622
0.00410511
0.00072761
0.00051450
0.01445709 | | MEAN | 0.00511765
0.00707647
0.03017647
0.00152941
0.04041176 | | Z | 71
71
71
71 | | VARIABLE | SS CCD SN | | | | | | | • | | |--------------------|--|--|-------------------------------------|--|--|----| | BS | ID | AS | 8 | CG | PB | ., | | 765543210987654321 | RIVERSEDIMENTRIORIVERSEDIMENTRIORIVERSEDIMENTRIIRIS RIVERSEDIMENTRIIRIVERSEDIMENTRIIRIVERSEDIMENTRIIRIVERSEDIMENTRIIRIVERSEDIMENTRIIVERSEDIMENTRIIVERSEDIMENTRIIVERSEDIMENTRIIVERSEDIMENTRIIVERSEDIMENTRIIVERSEDIMENTRIIVERSEDIMENTRIIVERSEDIMENTRIIVERSEDIMENTRIIRI | 7444000044444444
70001000000000000000000000000000000000 | 99112110011111
14822287224499711 | 00000000000000000000000000000000000000 | 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Table 2.5-A30 NBS River Sediment Analysis Summary gerata **ecococo desta segetal e locata esta kastados esta por esta** 8. 8. | c.v. | 11.728
9.039
4.006
24.683
5.448 | | | | | | | | |-----------------------|---|------------|------------------------------------|------|------|-------|-------|--------| | VARIANCE | 33.66 1
0.95
0.95
14.68
32826.52
7650.37 | | | | | | | | | SUM | 840.95
183.48
1625.85
2478.70 | | | | | | | | | STD ERROR
OF MEAN | 1.407
0.237
0.929
43.943
21.214 | | | | | | | | | MAXIMUM
VALUE | 60.74
12.20
100.99
1079.92
1822.98 | | | | 11.7 | 128.0 | 742.0 | 1890.0 | | MINIMUM
VALUE | 41.74
9.15
89.49
467.42
1442.98 | | | 0.99 | 8.7 | 0.06 | 0.989 | 1550.0 | | STANDARD
DEVIATION | 5.801
0.976
3.831
181.181
87.466 | | NBS River Sediment Analysis Values | | | | | | | MEAN | 49.47
10.79
95.64
734.04
1605.33 | | .ment Ana] | | | | | | | z | 1177 | ι, | Sedi | | | | | | | VARIABLE | AS
CU
CU
ZNB
ZNB | *Standards | NBS River | AS | G | CU | PB | ZN | | ١. | | | |----|--|--| | | | | | | | | | | | | | | | | | SOLID | 89889778888877777777777777777777777777 | |--------------|--| | K | 22 29 8 | | SE | | | PB | 222224
2222238223332222222338222222223332222222 | | 55 | 111 | | 8 | 7.1.2.2.1.1.0.2.1.1.0.1.0.1.0.1.0.1.0.2.0.0.0.0 | | AS |
15.2020
2.2033
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2.2034
2 | | WWT ZN | 7, 17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | | WWT_SE | 00000000000000000000000000000000000000 | | WWT PB | 00000000000000000000000000000000000000 | | WWT CU | 282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
282224
28224
28224
28224
28224
28224
28224
28224
28224
28224
28224
28224
28224
28224
28224
2822 | | WWT CD | | | WWT AS | 22222222222222222222222222222222222222 | | OBS DEPTH ID | 10 | | | | Table 2.5-A31 Soil Analysis (March 1987) | | SOLID | 004 81.7
229 77.7
297 77.7
202 77.7
205 77.7
205 77.7
207 77.7
207 88.0
207 77.7
207 81.0
45 99.0 | |---|---------|--| | | NZ. | 2563
88623
7687
7687
7687
77687
77687
77687
777
77 | | | SE | 20000000000000000000000000000000000000 | | | PB | 134.64
255.74
19.64
177.20
256.13
256.13
13.58
211.52
211.52 | | | 8 | 477
553.36
553.38
288.51
3056.37
522.38
53.78
53.78
53.78
53.78 | | | 8 | 11.6551
8522
11.1.1.2.2.88
11.1.2.2.6.88
11.1.2.2.6.88 | | | AS | 133.853
144.10
44.10
28.23
28.75
28.75
370.66
37.166
32.10
32.10
307.85 | | 3 | WT_ZN | 6460
66460
6670
6670
6670
6670
6670
6670 | | | WWT_SE | 20000000000000000000000000000000000000 | | | WWT_PB | 2011
2012
2014
2014
2014
2014
2014
2014 | | | WAT CU | 4390
4300
7220
7220
7300
7300
7300
7300
7300
7 | | | WWT_CD |
27.7.10
27.7.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27 | | | WWT AS | 539
104.00
104.00
288.336.00
26.2246.00
36.226.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206.00
36.206 | | | QI | KSSCW1108D1S1
KSSCW1108D2S1
KSSCW1108D4S1
KSSCW1108D4S1
KSSCW1108D6S1
KSSCW1109D1S1
KSSCW1109D2S1
KSSCW1109D5S1
KSSCW1109D5S1
KSSCW1109D6S1
KSSCW1109D6S1
KSSCW1109D6S1 | | | S DEPTH | 012w42012w420
12w42012w420 | Table 2.5-A32 Mean Soil Analysis | *
Depth | As | Cd | Cu | Pb | Se | Zn | |------------|--------|-------|---------|--------|-------|---------| | 0-1 | 429.7A | 3.2BC | 257.2AB | 137.0A | 1.03A | 277.5BC | | 1-2 | 127.5B | 5.0AB | 387.0A | 26.0B | 1.27A | 459.4AB | | 2-3 | 47.4B | 6.9A | 173.6BC | 18.3B | 1.41A | 658.6A | | 3-4 | 51.5B | 3.5BC | 136.0BC | 16.5B | 1.30A | 264.8BC | | 4-5 | 46.8B | 1.8CD | 18.6CD | 16.8B | 1.11A | 106.4CD | | 5-6 | 35.9B | 1.4CD | 16.2CD | 16.0B | 0.97A | 70.3CD | Values are mg/kg dry wt. ^{*} Depth in feet. # 2.5.10.2 Tables B1-B7 Sample ID and Variable Description Tables 2.5-B1-B7 present the wet extraction analysis data. The samples that appear in Tables B1 and B4 were collected in June and July 1986. Samples listed in Table B5 were collected in December 1986. ## Variable Description Unit WWT_AS,WWT_CD, WWT_CU,WWT_PB,WWT_ZN mg/kg or parts per million(ppm) wet weight basis W EXT Grams #### Example Key ID No.: WT AA SCW5T2R1 WT - Wet extraction procedure of California State Department of Health Sciences used for analysis AA - Sample site area AA: Allied A AB: Allied B CP: Coke pile site ES: ESI G1: G-1 Getty K2: K-2 KS: Kiln site SC - Sample type SC: Soil core W5T2R1 - Specific WES sample site location 5T2 Label for site R1, R2, R3 Triplicate samples Samples IDs in Table B5 included D1-D4. D1-D4 refer to the depth of core: D1 0" - 6" D2 6" - 12" D3 12" - 24" D4 24" - 36" - A Sample taken June 24, 1986 - B Sample taken June 25, 1986 - C Resample previous contractor site Table 2.5-B1 Wet Extraction (June and July 1986) | - 1 | 25.07
25.01
25.00
25.10 | 25.05
24.99
25.11 | 25.25
25.05
25.05 | 1222
1255
1256
1256
1256
1256
1256
1256 | 25.55
25.03
28.03
28.03 | 255.02
25.04
25.04 | 25.02 | 24.98
24.97 | 25.03
25.03 | 327
329
389
389 | 25.02
25.03
0.04 | 25.05
25.00
25.00 | 25.09
24.91 | 25.05
25.01 | 25.10
24.98 | 24.91
24.97
24.97 | 24.99
24.99 | 25.00
25.00
25.00 | |-----|---|--
--|--|--|--|--|----------------------------|--
--	--	--	--
--| | - t | 199.87
5.45
2.91
3.48 | 6.00
6.00 | 2010 | 4.00 | imod | مفد | أمرانا | જે છે | | • • | • • | | | | | • • | | 32.07
10.17 | | | | | | | | | | | | • • | | | | | • • | | • • | | | | 10.185
0.222
1.285
3.235 | 1.185
2.415
14.985 | 8.175
10.585 | 26.585
1.265
2055 | 0.726 | 0.0/3
0.145
905 | 1.045
16.585 | 0.963
9053
9053 | 8.425
6.515
5.515 | | 2.945
005
005 | 3.395
2.255 | 1.735 | 0.875
0.232 | 2.215
2.665 | 4.725
4.295
4.155 | 0.318
0.318
0.55 | 9.675
0.708 | | - 1 | 0.7590
0.0006
0.0006 | 0.0078
0.0136
0.1890 | 0000 | 0.002 | 0000 | 0.00/3
0.0196
0.154 | 0.0032 | 0.0091
0.0986 | 0.0181 | 0.0450 | 0.0498 | 0.0032 | 0.0374 | 000 | 0.0035
0.0014 | 0.0042 | 0000 | 0.0960 | | | | | | | | | | യ്ഗ് | | ·•• | • | 4.0 | | 200 | ښز | | | | | חד | WTAASCW10R2
WTAASCW10S1
WTAASCW10S2 | WTAASCW1OT1R2
WTAASCW1OT1R3
WTAASCW11R1R1 | WTAASCWIIRIRZ
WTAASCWIIRIR3
WTAASCWIIRIR3 | WIAASCW1251
WIAASCW1271
WIAASCW1271 | WTAASCW12W2
WTAASCW14W1 | WTAASCW14XZ
WTAASCW16U1
UTAASCW16I12 | VTAASCV16U3
VTAASCV16U4 | WTAASCW16V1
WTAASCW16V2 | WTAASCW16V4
WTAASCW16V4 | WIAASCW16WI
WIAASCW16W2R1 | WIAASCW16WZRZ
WTAASCW16WZR3
UTAASCW16W3R1 | WTAASCW16W3R2
WTAASCW16W3R3 | WTAASCW16W4
WTAASCW16X1 | WTAASCW16X3 | WTAASCW16X5 | WIAASCWI6X6KI
WIAASCWI6X6R2 | | WTABSCW14R1
WTABSCW14R1
WTABSCW14S1 | | | ID WWI AS WWI CD WWI ED WWI EAR | NR2 1.355 0.7590 10.185 3.229 199.87 25. NS1 4.205 0.0006 0.222 0.117 5.45 25. NS2 3.945 0.0000 1.285 0.769 2.91 25. NTIR1 8.855 0.0034 3.235 2.289 3.48 25. | RZ 1.355 0.7590 10.185 3.229 199.87 25.052 0.0006 0.222 0.769 2.91 25.052 0.0000 1.285 0.769 2.91 25.0117 9.955 0.0078 1.185 1.979 3.35 25.01183 4.085 0.0078 1.185 1.979 3.35 25.01183 1.875 0.186 1.985 0.588 3.0099 7.16 24.187 1.885 0.0078 1.485 0.588 3.0078 1.285 0.588 3.0078 1.285 0.588 3.0078 1.285 0.588 3.0078 1.285 0.588 3.0078 1.285 0.588 3.0078 1.285 0.588 3.0078 0.588 3.0 | NR.2 1.355 0.7590 10.185 3.229 199.87 25. 0.7590 10.222 0.117 5.45 25. 0.222 0.0006 0.222 0.117 5.45 25. 0.117 5.45 25. 0.0004 1.285 0.769 2.91 25. 0.0034 3.235 2.289 3.48 25. 0.0078 1.185 1.979 3.35 2.289 3.35 25. 0.0078 1.185 1.979 3.35 25. 0.0034 1.185 0.588 30.97 25. 0.0030 8.175 0.319 22.97 25. 0.004 1.255 0.0690 8.275 0.004 1.77 25. 0.004 | National Property Nati | 1.355 | NR.2 1.355 0.7590 10.185 3.229 199.87 25.77 289 3.348 3.0000 10.0000 1.285 0.769 3.348 2.55 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.285 0.0000 1.288 30.97 22 | 1.355 | MILES 1.355 0.0006 0.222 0.117 0.222 0.117 0.0009 0.1285 0.0009 0.222 0.117 0.0009 0.117 0.0009 0.1185 0.0009 0.117 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1185 0.0009 0.1195 0.0009 0.0009 0.1195 0.0009
0.0009 0.000 | RESTRICT TO THE PROPERTY OF TH | 1.355 0.7590 0.117 0.7590 0.0000 0.117 0.0000 0.117 0.0000 0.117 0.0000 0.117 0.0000 0.117 0.0000 0.0000 0.117 0.0000 0.0000 0.117 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 1.355 1.35 | 1.355 0.7590 0.0000 0. | 1.355 1.35 | 1.282 1.28 | 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.000000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.00000 1.00000 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 | NATIONAL STATE OF THE PROPERTY | COLING CO | | \mathbf{r} |
---| | # 48812 44 4010008872867486210475241000004111000404010 | | # 0.000010000010110000000000000000000000 | | 9.21
9.084.0.00.44.0.04.1.40.1.4.1.1.1.1.1.1.1.0.0.0.0 | | # 0000110000000000000000000000000000000 | | 11 | | UTABSCW1451C WTABSCW1501 WTABSCW1501 WTABSCW1501 WTCPSCW2667 WTCPSCW2667 WTCPSCW2667 WTCPSCW2667 WTCPSCW2667 WTCPSCW2667 WTCPSCW29E10 WTCPSCW29E11R3 WTCPSCW29E11R3 WTCPSCW29E11R3 WTCPSCW29E11R3 WTCPSCW29E11R3 WTCPSCW29E11R3 WTCPSCW29E2R3 WTCPSCW29E7 WTCPSCW29E7 WTCPSCW29E7 WTCPSCW29E7 WTCPSCW29E7 WTCPSCW29E7 WTCPSCW29E7 WTCPSCW29E7 WTCPSCW29E7 WTCPSCW30F4R1 WTCPSCW30F4R1 WTCPSCW30F4R1 WTCPSCW30F4R3 WTCPSCW30F4R3 WTCPSCW13H3 WTESSCW13H3 | | 0
8 444440000000000000000000000000000000 | | $\widehat{}$ | |--------------| | nned | | <u> </u> | | ij | | Ŝ | | | | _ | | B1 (| | 5-B1 (| | 2.5-B1 (| | Ų | | | | * | |--| | 23.33.32.20
23.25.33.22.00
23.25.33.22.00
25.25.33.32.00
25.25.33.33.32.00
25.25.33.33.33.33.33.33.33.33.33.33.33.33.33 | | 20 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 1.20044440000000000000000000000000000000 | | 21100000100000000000000000000000000000 | | HOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO | | UTESSCU13J3 UTESSCU13J3 UTESSCU13K1 UTESSCU13K2R1 UTESSCU13K2R1 UTESSCU13K2R1 UTESSCU13K2R2 UTESSCU13K2R3 UTESSCU13K3 UTESSCU13K3 UTESSCU13K3 UTESSCU12K1 UTESSCU13M5R1 UTESSCU13M5R1 UTESSCU13M5R1 UTESSCU13M5R1 UTESSCU13M5R1 UTESSCU13M5R1 UTESSCU13M5R1 UTESSCU14M4 UTESSCU14K3 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K3 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K4 UTESSCU14K3 UTESSC | | 8830308830225555555555555555555555555555 | | | | Table 2. | 2.5-B1 (Concluded | luded) | | | | |------------|----------------------------|------------------|-------------------|----------------|----------------------------|-------------------|-------------------------| | OBS | ΠD | WWT_AS | WITCD | WWT_CU | WWT_PB | WVT_ZN | V EXT | | 135 | WTK2SCW6P2
WTK2SCW6Q1 | 0.597 | 3.1690 | 46.685 | 103.639
6.429
17.839 | 1139.87
301.87 | 255.8
888 | | 137
137 | VIK2SCV9P1
VIKSSCV1OR1 | 0.361 | 0.0390 | 0.512 | 2.329 | 205.87
205.87 | 25.55
25.08
25.08 | | 139
140 | VIKSSCV10R3
VIKSSCV10R4 | 0.525 | 0.0698 | 1.595 | 27.439
36.139 | _33.17
49.37 | 25.01
25.02 | | 141
142 | VTKSSCV11R2
VTKSSCV12R1 | $0.288 \\ 0.376$ | 0.0522 | 0.846
0.922 | 0.379 | 7.93
8.16 | 25.06
25.04 | | 143
144 | WTKSSCW8R1
WTKSSCW8R2 | 1.665
3.565 | 0.0740 | 1.575
0.768 | 0.03 | 20.77
63.87 | 25.01
24.96 | | 145 | VTKSSCV901 | 0.278 | 0.2030 | 0, 08 | 50.0 | /8.0/ | 24.99 | | | | Table 2.5-82 | ыапк | Analysis | | | | |-----|--------------------------------------|---------------------------------|--------|----------|-------------------------|-------------------------|--| | OBS | Ð | WVT AS | WWT_CD | WWT_CU | WWT_PB | WWT_ZN | | | H20 | VTBLANKR3
VTBLANKR2 | 0.000 | 0.0010 | 0.008 | 0.043 | 0.065 | | | 04v | WIBLANKR9
WTBLANKR8 | 000
000
000
000
000 | 0.0001 | 0.039 | 0.000 | 0.00 | | | 9~α | VTBLANKR5
VTBLANKR6
VTRI ANKR7 | 0000 | | 0000 | 0.840
1.090
0.110 | 0.057
0.132
0.430 | | | oo | INTELLEGISTICS | | | 010 | 030 | 0.078 | | Table 2.5-B3 Blank Analysis Summary | VARIABLE | z | MEAN | STANDARD
DEVIATION | MINIMUM
VALUE | MAXIMUM
VALUE | STD ERROR
OF MEAN | SUM | VARIANCE | C.V. | |--------------------------------------|------|-------|-----------------------|---|------------------|----------------------------------|--------------------------------|---|---------------------------| | WWT AS
WWT CD
WWT CU
WWT PB | თთთთ | 0.005 | 0.000 | 000000000000000000000000000000000000000 | 0.005 | 0.000
0.000
0.164
0.164 | 0.045
0.013
3.251
975 | 000000000000000000000000000000000000000 | 172.38
78.83
136.51 | Table 2.5-B4 Wet Extraction (June and July 1986) 0BS ID WT_SE VET CONTROLL 1 VIBLANCES 2 VICESCU26F2 0 VICESCU26F3 0 VICESCU26F3 0 VICESCU27F1 VICE | ### 1882 - 22 - 22 - 22 - 22 - 22
- 22 - 22 | |---| | # 00000000111440100881448100001084448018141000010110000
40244188884400888488414481100010884118118118118118118181818 | | 100000110001181111000011900000000000000 | | 00000001111000111101000000000000000000 | | 20000000000000000000000000000000000000 | | UTAASCU16U5 WTAASCU16U6 WTAASCU16U6 WTAASCU15Q2 WTAASCU15Q2 WTABSCU15SQ2 WTABSCU15SQ3 WTABSCU15SQ3 WTASSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q2DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 WTKSSCU10Q1DQ1 | | 00
80
100000000000000000000000000000000 | | | | lable 2. | בייונטט) בפ-כ | (continued) | | | |------------------|---|----------------------------|-----------------------|--------------------------|---|-------------------------| | BS | ΩI | WWT_AS | WWT_CD | WYT_CU | WWT_PB | WYT ZN | | 46 | VTKSSCV1102D4
VTKSSCV1102D1 | 9.6949 | 0.281 | 27.972 24.672 | 0.00- | 35.27
32.57
55.87 | | 844°
800° | WIKSSCWIIQZDZ
WIKSSCWIIQZD3
WIKSSCWIIO2D4 | 6.1549
6.1549
0.1369 | 0.414
1.000 | 43.672
22.072 | 0.05 | 79.97
79.97
80.17 | | 222 | VIKSSCV1103D1R1
VIKSSCV1103D1R2 | 5.4749 | $0.078 \\ 0.136$ | 12.572 | 0.03 | 7.50
10.37 | | 553 | WTKSSCW1103D1R3
WTKSSCW1103D2 | 5.2949 | 0.141
0.094 | 11.272
9.272
9.272 | 0
0
0
0
0
0
0
0
0 | 12.37 | | . | WTKSSCW1103D3
WTKSSCW1103D4 | 0.5209 | 0.187 | 4.952
17.022 | 1.48 | 54.47 | | ~85° | WTKSSCW11R4D1
WTKSSCW11R4D2 | 0.2769 | 0.953 | 13.372 | 000 | 128.97 | | ,
187 | WIKSSCWIIR4US
WIKSSCWIIR4D4
WIKSSCWIIIP5D1 | 0.6429 | 0.313 | 0.659 | 0.10 | 60.00 | | 7
62
63 | WIKSSCW11R5D2 | 0.1349 | 0.015 | 0.288 | 0.57 | 1.75 | | 345 | WIKSSCW11R5D3R2
WIKSSCW11R5D3R2
UTVSSCW11R5D3R3 | 0.0569 | 000 | 0.190 | 888 | 0.00 | | 385 | WIKSSCU11R5D4
UTKSSCU11R5D4 | 0.0689 | 1.820 | 0.171 | 0.12 | 49.6 | | 286 | VTKSSCV11R6D2
VTKSSCV11R6D2 | 0.6349 | 2.730 | 7.702 | 0.16
0.11 | 139.97 | | 22. | WIKSSCW11R6D4
WIKSSCW11R7D1 | 0.1679 | $\frac{1.260}{0.170}$ | 1.252 | 3.00 | 33.9 | | ,
72
73 | VIKSSCV11R7D2
VIKSSCV11R7D3 | 0.9759 | 0.067 | 0.256 | 00
88 | 22.87
42.0 <u>7</u> | | 7 <u>4</u>
75 | VIKSSCV11R7D4
VIKSSCV11R8D1 | 0.3989 2.4349 | 0.248
0.087 | 0.315
9.852 | 0.04 | 72.27 | | <u>),6</u>
77 | VIKSSCV11R8D2
VIKSSCV11R8D3 | $\frac{1.5749}{0.1939}$ | $0.118 \\ 0.132$ | 18.072
2.832 | $0.14 \\ 0.09$ | $\frac{10.8}{11.77}$ | | 138
139 | VIKSSCV11R8D4
VIKSSCV11R9D1 | 0.1689 34.0949 | 0.061
0.214 | $\frac{1.152}{16.672}$ | 00.00 | 16.37 | | 80 | VTKSSCV11R9D2R1
VTKSSCV11R9D2R2 | 1.0949 2.0949 | 0.419
0.406 | 33.872 29.472 | 0.08
0.07 | 32.9/
30.3/ | | 83
83 | WTKSSCW11R9D2R3
WTKSSCW11R9D3R1 | 6.5949
0.5789 | 0.362
0.470 | 28.272 | 000 | 35.47 | | 84
85 | VTKSSCV11R9D3R2
VTKSSCV11R9D3R3 | 2.7349 | 0.351 | 24.8/2 | 0.00 | 333
333
366 | | 888
878 | WTKSSCW11R9D4
WTKSSCW1201D1
WTKSSCW1201D2 | 0.9949 0.1869 0.2749 | 0.060 | 21.022
0.731
0.324 | 000
000
003
003 | 3.27
3.27 | | 68 | WTKSSCW1201D3 | 0.1429 | 0.021 | 0.281 | 0.42 | 1.37 | | | WT_ ZW | 00000000000000000000000000000000000000 | |-------------|--------|---| | | WWT_PB | 000000000000000000000000000000000000000 | | (Continued) | WWT CU | 00000000000000000000000000000000000000 | | 2.5-B5 (Con | WWT_CD | -0000000000000000000000000000000000000 | | Table | WWT AS | 10000000000000000000000000000000000000 | | | ID | UTKSSCV1201D4 UTKSSCV12R4D1 UTKSSCV12R4D1 UTKSSCV12R4D2R1 UTKSSCV12R4D2R2 UTKSSCV12R4D2R3 UTKSSCV12R4D3 UTKSSCV12R5D1 UTKSSCV12R5D1 UTKSSCV12R6D1 UTKSSCV12R6D1 UTKSSCV12R6D1 UTKSSCV13R1D1 UTKSSCV13R1D1 UTKSSCV13R1D1 UTKSSCV13R1D2R3 UTKSSCV13R1D2R3 UTKSSCV13R1D2R3 UTKSSCV13R1D2R3 UTKSSCV13R1D4R3 UTKSSCV13R3D1 UTKSSCV13R3D1 UTKSSCV13R3D1 UTKSSCV13R3D2 UTKSSCV13R3D3 UTKSSCV13R3D3 UTKSSCV13R4D2 UTKSSCV13R4D3 UTKSSCV13R4D3 UTKSSCV13R4D3 UTKSSCV13R4D3 UTKSSCV13R4D3 UTKSSCV13R5D1 UTKSSCV13R5D1 UTKSSCV13R5D1 UTKSSCV13R5D3 | | | OBS | 27777777777777777777777777777777777777 | | _ | |-------------| | (Concluded) | | 2.5-B5 (| | Table | | WYT_ZN | 106
699.97
77.929.901
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
10.201
1 | |--------
--| | WWT_PB | 0.1022000000000000000000000000000000000 | | WWT_CU | 0.0592
1.5522
1.362222228
1.362222228
1.362222228
1.36222222228
1.36222222228
1.36222222228
1.3622222222228
1.36222222222222222222222222222222222222 | | WWT_CD | 00000000000000000000000000000000000000 | | WWT_AS | 00000000000000000000000000000000000000 | | ID | VTKSSCVBR3D2
VTKSSCVBR3D3
VTKSSCVBR4D1
VTKSSCVBR4D2
VTKSSCVBR4D3R1
VTKSSCVBR4D3R3
VTKSSCVBR4D3R3
VTKSSCVBR4D3R3
VTKSSCVBQ2D2
VTKSSCVBQ2D2
VTKSSCVBQ2D2
VTKSSCVBQ2D4
VTKSSCVBQ2D4R3
VTKSSCVBQ3D1
VTKSSCVBQ3D1
VTKSSCVBQ3D2
VTKSSCVBQ3D2
VTKSSCVBQ3D4
VTKSSCVBR1D1
VTKSSCVBR1D1
VTKSSCVBR1D1
VTKSSCVBR1D3
VTKSSCVBR1D1
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3
VTKSSCVBR1D3 | | OBS | 11111111111111111111111111111111111111 | Table 2.5-B6 Blank Analysis | OBS | ID | WWT_AS | WAT CD | WWT_CU | WWT_PB | WZ_TWV | |------------|--------------------------|--------|--------|--------|--------|--------| | ← (| TBLANKR1 | 0.005 | 0.0001 | 0.030 | 0.00 | 0.030 | | 7m | WIBLANKRI
WIBLANKRII | 000 | 000 | 0.00 | 38 | 000 | | 41 | WTBLANKR12 | 0.005 | 0.0001 | 0.030 | 0.003 | 0.077 | | ^ | VIBLANKRI 3 | | 000.0 | 0.00 | 0.00 | 0,000 | | ٥٢ | WIBLANKRI4
UTBLANKRI5 | 96 | 0.0001 | 0.00 | 100 | | | - ∞ | WTBLANKR2 | 0.00 | 0.0001 | 0.030 | 0.003 | 0.015 | | 6 | WTBLANKR3 | 0.005 | 0.0001 | 0.030 | 0.019 | 0.030 | | 10 | VTBLANKR4 | 0.005 | 0.0001 | 0.030 | 0.013 | 0.030 | | Ħ | WTBLANKR5 | 0.005 | 0.0001 | 0.030 | 0.001 | 0.030 | | 12 | WTBLANKR6 | 0.005 | 0.0001 | 0.030 | 0.00 | 0.030 | | 13 | VTBLANKR7 | 0.005 | 0.0001 | 0.030 | 0.001 | 0.030 | | 14 | VTBLANKR8 | 0.005 | 0.0001 | 0.030 | 0.005 | 0.030 | | 15 | VTBLANKR9 | 0.005 | 0.0001 | 0.030 | 0.088 | 0.030 | Table 2.5-B7 Blank Analysis Summary | VARIABLE | z | MEAN | STANDARD
DEVIATION | MINIMUM
VALUE | MAXIMUM
VALUE | STD ERROR
OF MEAN | SUM | VARIANCE | C.V. | |--------------------------------------|---|--|--------------------------------------|-------------------------------------|--|--|--|---|---| | WYT AS
WYT CU
WYT CU
WYT PB | 22255
2525
2525
2525
2525
2525
2525
25 | 0.0051
0.0003
0.0282
0.0100
0.0321 | 0.0003
0.0007
0.0222
0.0130 | 0.0050
0.0001
0.0010
0.010 | 0.0060
0.0027
0.0300
0.0880
0.0770 | 0.0001
0.0002
0.0018
0.0057
0.0034 | 0.0760
0.0041
0.4230
0.1500
0.4820 | 0.00000007
0.00000045
0.0004860
0.00049429
0.00016898 | 5.096
245.604
24.721
222.325
40.454 | ## 2.5.10.3 Tables C1-C10 Sample ID and Variable Description Tables 2.5-C1-C10 present the EP toxicity analysis data. The samples that appear in Tables C1 and C4 were collected in June and July 1986. Samples listed in Table C7 were collected in December 1986. Samples listed in Table C10 were collected in March 1987. ## Variable Description #### Unit WWT_AS, VWT_CD, mg/l wet weight basis WWT_CU, WWT_PB, WWT_ZN EP_AS, EP_CD, EP_PB SOLID Percent solids WT Grams DEPTH Feet #### Example Key ID No.: EP AA SCW5T2R1 EP - Extraction Procedure of RCRA used for analysis AA - Sample site area AA: Allied A AB: Allied B CP: Coke pile site ES: ESI G1: G-1 Getty K2: K-2 KS: Kiln site SC - Sample type SC: Soil core GT: Surface sample gritty material RB: Surface sample red brick YB: Surface sample yellow brick W5T2R1 - Specific WES sample site location 5T2 Label for site R1, R2, R3 Triplicate samples Samples IDs in Table C7 included D1-D4. D1-D4 refer to the depth of core: D1 0" - 6" D2 6" - 12" 12" - 24" D3 24" - 36" D4 Samples IDs in Table C10 included D1-D6. D1-D6 refer to the depth of core: D1 0' - 1' D2 1' - 2' D3 2' - 3' 3' - 4' **D4** 4' - 5' 5' - 6' D5 D6 - Sample taken June 24, 1986 Sample taken June 25, 1986 - Resample previous contractor site | | TA | 00000000000000000000000000000000000000 | |---|--------|---| | (98) | WYT ZN | 23
23
24
25
25
25
20
20
20
20
20
20
20
20
20
20
20
20
20 | | and July 19 | WWT_PB | | | Table 2.5-C1 EP Toxicity (June and July 1986) | WATCH | 00000000000000000000000000000000000000 | | | WWT_CD | 00000000000000000000000000000000000000 | | | WVT_AS | | | | ID | EPAASCU12V2 EPAASCU14X2 EPAASCU16V1 EPAASCU16V4 EPAASCU16V4 EPASCU16V1 EPCPSCU26F1 EPCPSCU26F3 EPCPSCU26G3 EPCPSCU26G3 EPCPSCU29E10 EPCPSCU29E11 EPCPSCU29E11 EPCPSCU29E1 EPCPSCU20E1 | | | OBS | 4448838838828828282828282828288384888488 | | | W | 0.000000000000000000000000000000000000 | |--------------------|--------|--| | | WZ_TWW | 11.15555555555555555555555555555555555 | | | WWT_PB | 00000000000000000000000000000000000000 | | 2.5-C1 (Concluded) | WWT_CU | 0.000000000000000000000000000000000000 | | Table 2.5-C1 (| WWT_CD | 00000000000000000000000000000000000000 | | Tab | WWT_AS | | | | ΩI | EPGISCU13L5 EPGISCU13M1 EPGISCU13M5R1 EPGISCU13M5R2 EPGISCU13M5R3 EPGISCU14L2R3 EPGISCU14L2R3 EPGISCU14L2R3 EPGISCU14L2R3 EPGISCU10P2 EPK2SCU3R1 EPK2SCU3R1 EPK2SCU403 EPK2SCU403 EPK2SCU403 EPK2SCU403 EPK2SCU403 EPK2SCU403 EPK2SCU6P2 EPK2SCU6P2 EPK2SCU6P2 EPK2SCU6P2 EPK2SCU6P2 EPK2SCU6P2 EPK2SCU6P2 EPK2SCU6P2 EPK2SCU6P2 | | | OBS | 44444444444444444444444444444444444444 | | | _ | | | |-----------------------------|---------|------------------------|--| | | WWT_PB | 0.002 | | | | WATE CU | 0.002 | | | Analysis | WWT CD | 0.0008 | | | Table 2.5-C2 Blank Analysis | WWT_AS | 0.005 | | | Table | OI (I | EPBLANKR1
EPBLANKR2 | | | | OBS | 7 | | Table 2.5-C3
Blank Analysis Summary | VARIANCE C.V. | 00 0.0000 0.000
09 0.0000 109.994
30 0.0000 47.140
30 0.0000 47.140
10 0.0267 112.262 | |-----------------------|---| | SUM | 20000 | | STD ERROR
OF MEAN | 000000000000000000000000000000000000000 | | MAXIMUM
VALUE | 0.0050
0.0020
0.0020
0.2610 | | MINIMUM
VALUE | 0.0000000000000000000000000000000000000 | | STANDARD
DEVIATION | 0.0000
0.0005
0.0007
0.1633 | | MEAN | 0.0050
0.00050
0.0015 | | z | 22222 | | VARIABLE | WWT AS
WWT CD
WWT PB | Table 2.5-C4 EP Toxicity (June and July 1986) | 20:10:00:04:1:10:00:00:00:00:00:00:00:00:00:00:00:0 | |--| | 00000000000000000000000000000000000000 | | 00000000000000000000000000000000000000 | | 00000000000000000000000000000000000000 | | AT AS SECOND 000000000000000000000000000000000000 | | EPAASCU10R2 EPAASCU10R2 EPAASCU10S2 EPAASCU10S2 EPAASCU10T1R1 EPAASCU10T1R3 EPAASCU11R1R1R2 EPAASCU11R1R3 EPAASCU11R1R3 EPAASCU11R1R3 EPAASCU11R1R3 EPAASCU11R1R3 EPAASCU16U3 EPAASCU16W3 EPAASCU16W3 EPAASCU16W3 EPAASCU16W3 EPAASCU16W3 EPAASCU16W3 EPAASCU16W3 EPASCU16W3 EPASCU16W3 EPASCU16W3 EPASCU16W3 EPASCU16W3 EPASCU16W3 EPASCU14W3 EPABSCU14W3 EPABSCU14W3 EPABSCU14S1 EPABSCU15S1 EPABSCU15S1 EPABSCU15S1 | | 0
8
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | | Table 2.5-C4 (Concluded) | WWT_AS WWT_CD WWT_CU WWT_PB WWT_ZN WI | 0.969
0.950
0.951
0.860
0.951 | | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0005
0.0000
0.0005
0.0000
0.0005
0.0005 | 0.0015 0.0058 0.030 0.032
0.0015 0.0118 0.014 0.296
0.0010 0.0000 0.028 0.752 | 000 0.0010 0.0018 0.024 2.839
000 0.0010 0.0048 0.010 0.776
000 0.0035 0.0000 0.010 2.479
000 0.0035 0.0088 0.026 25.569 | 0.0300 0.0098 0.046 18.569
0.0695 0.0398 0.580 52.669
0.0015 0.0048 0.016 0.740 | 0.0020 0.0008 0.006 0.070
0.0000 0.0000 0.002 3.299
0.0000 0.0000 0.008 7.239 | 133 0.0136 0.0638 0.024 6.219
021 0.0021 0.0398 0.092 2.539
009 0.0036 0.0578 0.022 1.429 | 0.0000 0.02/8 0.004 0.004
0.0000 0.1458 0.044 1.979
0.0035 0.044 1.979 | |--------------------------|---------------------------------------|--|--|--|---|---|---|---|---|--| | 2.5-C4 | AS WWT | 0000 | 04 ~ m0 | 2000
2000
2000
2000 | 0000
0000 | 300c | 8000
8000 | 000 | 133
0021
009
000
000 | 0020 | | | OI OI | 3PCPSCW29E11R2
3PCPSCW29E11R3
3PCPSCW29E2R2
3PCPSCW29E2R2 | EPCPSCW29F3R1
EPCPSCW29F3R1
EPCPSCW29F3R3
EPCPSCW30F1 | GPCPSCW30F4A1
GPCPSCW30F4R2
GPCPSCW30F4R3
GPESSCW13H1 | EPESSCV13H2
PESSCV13J1
PESSCV13J1 | PESSCW13J2
PESSCW13J3
PESSCW13K1 | IPESSCVI 3K2R2
IPESSCVI 3K2R3
IPESSCVI 3K3 | IPESSCV14F1
IPG1SCV12N2A
IPG1SCV12N2B | EPKSSCV10R1
EPKSSCV10R3
EPKSSCV10R4 | EPKSSCW11R1
EPKSSCW8R1
EPKSSCW8R3 | | | S | | 70H06 | | | | | | | | | | Table 2.5-C5 Blank | 5 Blank Ana | Analysis | | | |------------|--------------------|------------------|----------------|--------|--------| | E | WWT_AS | WWT_CD | war_cu | WWT_PB | WYT ZN | | EPBLANKR3 | 0.005 | 0.0027 | 0.001 | 0.002 | 0.032 | | EPBLANKR5 | 0.000 | 000.0 | 0.001 | 0.00 | 0.030 | | EPBLANKR6 | 0.00 | 0.0001
0.0001 | 0.001
0.001 | 0.001 | 0.030 | | CPBLAINKK/ | | | 35 | 7000 | 0.03 | Table 2.5-C6 Blank Analysis Summary | VARIABLE | z | MEAN | STANDARD
DEVIATION | MINIMUM
VALUE | MAXIMUM
VALUE | STD ERROR
OF MEAN | MUS | VARIANCE | C.V. | |--------------------------------------|-------|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--------------------------------------|----------|---------------------------------------| | WWT AS
WWT CU
WWT PB
WWT ZN | ००००० | 0.0050
0.0005
0.0032
0.0017 | 0.0000
0.00011
0.00053
0.0013 | 0.0000
0.0001
0.0010
0.0010 | 0.0050
0.0027
0.0027
0.0330 | 0.0000
0.00024
0.00224
0.00224 | 0.0300
0.0032
0.0190
0.0100 | 00000 | 0.000
199.021
167.597
30.984 | | | WYT ZN | 34222862000000000000000000000000000000000 | |-----------------|--------|---| | (9 | WWT_PB | 000000000000000000000000000000000000000 | | (December 1986) | WWT_CU | 00000000000000000000000000000000000000 | | Toxicity (De | WATCD | 00000000000000000000000000000000000000 | | 2.5-C7 EP To | WWT_AS | 000000000000000000000000000000000000000 | | Table 2 | ID | EPAASCU16U8 EPABSCU1502R1 EPABSCU1502R2 EPABSCU1502R3 EPABSCU1502R3 EPABSCU1553 EPABSCU1553 EPABSCU1553 EPABSCU1553 EPASSCU1001D1 EPKSSCU1001D1 EPKSSCU1002D1R1 EPKSSCU1002D1R2 EPKSSCU1002D1R2 EPKSSCU1002D1R3 EPKSSCU1003D1 EPKSSCU1003D1 EPKSSCU1003D2 EPKSSCU1003D2 EPKSSCU1003D3 EPKSSCU1003D3 EPKSSCU101D3 EPKSSCU101D3 EPKSSCU1101D3 EPKSSCU1101D3 EPKSSCU1101D3 EPKSSCU1101D3 EPKSSCU1101D3 EPKSSCU1101D3 EPKSSCU1101D3 EPKSSCU1101D3 EPKSSCU1102D3 | | | OBS | 28232222222222222222222222222222222222 | Table 2.5-C8 Blank Analysis | WWT_PB | 000 | |--------|-------------------------------| | WWT_CU | 0003 | | WWT_CD | 0.0000 | | WWT AS | 0000 | | ID | BLANKR1
BLANKR2
RLANKR3 | | | | REMEDIAL INVESTIGATION OF CONTAMINANT MOBILITY AT NAVAL MEAPONS STATION C. (U) ARMY ENGINEER MATERMAYS EXPERIMENT STATION VICKSBURG MS ENVIR. CR LEE ET AL. JUN 88 MES/MP/EL-86-2-APP F/G 24/4 AD-R195 946 2/2 UNCLASSIFIED UTION TEST CHART --- Table 2.5-C9 Blank Analysis Summary | C.V. | 0.000
154.649
21.651
125.967
40.733 | |-----------------------|---| | VARIANCE | 0.00000000
0.00002500
0.00000333
0.000021333 | | SUM | 0.01500000
0.00970000
0.00800000
0.01100000 | | STD ERROR
OF MEAN | 0.00000000
0.00288694
0.00033333
0.00266667 | | MAXIMUM
VALUE | 0.0050000000000000000000000000000000000 | | MINIMUM
VALUE | 0.00500000
0.00010000
0.00200000
0.00100000 | | STANDARD
DEVIATION | 0.00000000
0.00500033
0.0057735
0.00661880 | | MEAN | 0.0050000
0.00323333
0.00266667
0.00366667 | | z | നനനന | | RIABLE | WYT AS
WYT CU
WYT CU | | | SOLID | 8888666688872288888666888832566888888888888888888888 | |---------------|-------|---| | 1987) | EP_PB | 88988888888888888888888888888888888888 | | ty (March | EP_CD | 000000000000000000000000000000000000000 | | EP Toxicity | EP_AS | 000000000000000000000000000000000000000 | | Table 2.5-C10 | П | KSSCW1100151 KSSCW110100251 KSSCW110100151 KSSCW110100151 KSSCW110100551 KSSCW110100551 KSSCW110110551 KSSCW110110551 KSSCW110110551 KSSCW110110551 KSSCW110120551 KSSCW110120551 KSSCW11040551 KSSCW11040551 KSSCW11040551 KSSCW11050551 KSSCW11050551 KSSCW11050551 KSSCW11050551 KSSCW11060551 | | | DEPTH | 000HQM4N0HQM4N0HQM4N0HQM4N0HQM4N0HQM4
 | | | S | OHOR45997890HOM45997890HOM4599789 | | DEPTH | a | EP_AS | EP_CD | EP P | |---|---
--|--|---| | 010m4v0010m4v0
15-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | KSSCV1108D1S1
KSSCV1108D2S1
KSSCV1108D4S1
KSSCV1108D4S1
KSSCV1108D6S1
KSSCV1109D2S1
KSSCV1109D2S1
KSSCV1109D4S1
KSSCV1109D4S1
KSSCV1109D6S1
KSSCV1109D6S1 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | | DEPTH
10-1
10-1
10-1
10-1
10-1
10-1
10-1
10- | TO TO THE | EP KSSCV1108D1S1 0.12 KSSCV1108D1S1 0.12 KSSCV1108D2S1 0.13 KSSCV1108D5S1 0.13 KSSCV1108D6S1 0.13 KSSCV1109D1S1 0.2 KSSCV1109D4S1 0.2 KSSCV1109D4S1 0.2 KSSCV1109D6S1 0.2 KSSCV1109D6S1 0.2 KSSCV1109D6S1 0.13 0 | EP_AS EF
KSSCV1108D1S1 0.28 0.
KSSCV1108D2S1 0.16 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 | ## 2.5.10.4 Tables D1-D16 Sample ID and Variable Description Tables D1-D8 contain clam tissue analysis. The samples that appear in Table D1 were collected in June 1986. #### Variable Description CONTRACTOR OF THE STREET OF SAFETY O Unit AS,CD,PB,ZN mg/kg or parts per million(ppm) dry weight basis VOLUME Milliliters(ml) CLAM IN, CLAM OUT Integer DRYWT Grams ## Example Key ID No.: AB CL W12S1R3 AB - Sample site area AA: Allied A AB: Allied B BK: Remote reference site ES: ESI G1: G-1 Getty K2: K-2 CL - Sample type CL: Clam tissue sample W12S1R3 - Specific WES sample site location 12S1 Label for site R1, R2, R3 Triplicate samples | | CLAM_IN | ないというないというないというないというないというないというないというないとい | |-----------------------------------|----------|--| | 1986) | VOLUME | SOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO | | | CLAM_OUT | 2222222222222222222222222222222222222 | | ysis (June | DRYVT | | | Table 2.5-D1 Clam Tissue Analysis | ZN | 222239963322288011222222222222222222222222222222 | | | PB | 000000000000000000000000000000000000000 | | | 8 | 88928888888888888888888888888888888888 | | | AS | 22222222222222222222222222222222222222 | | | TD OI | AACLUIORSRI
AACLUIORSRI
AACLUIORSRI
AACLUIOSRI
AACLUIOTIRI
AACLUI241RI
AACLUI242RI
AACLUI242RI
AACLUI244RI
AACLUI244RI
AACLUI244RI
AACLUI246RI
AACLUI246RI
AACLUI246RI
AACLUI246RI
AACLUI246RI
AACLUI246RI
AACLUI248RI
AACLUI248RI
AACLUI243RI
AACLUI2VIRI
AACLUI2VIRI
AACLUI2VIRI
AACLUI2VIRI
AACLUI2VIRI
AACLUI2VIRI
AACLUI2VIRI
AACLUI2VIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI
AACLUISUIRI | | | CLAM_IN | <u> </u> | |----------------------------|----------|--| | | VOLUME | SONONONONONONONONONONONONONONONONONONON | | | CLAM_OUT | なみられななおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおお | | nded) | DRYWT | 00000000000000000000000000000000000000 | | 5-Table 2.5-D1 (Concluded) | NZ. | 082820111020222222222222222222222222222 | | | PB | 00000000000000000000000000000000000000 | | Table 2. | 8 |
ることできることでは、これできます。これでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、 | | | AS | 22222222222222222222222222222222222222 | | | CI CI | AACLU6SIR3 AACLU6SIR3 AACLU6SIR3 AACLU7SIR3 AACLU7IR12 AACLU7IR12 AACLU7IR12 AACLU7IR13 AACLU7IR13 AACLU7IR13 AACLU7IR13 AACLU8S2R3 AACLU8S2R3 AACLU8S2R3 AACLU8S2R3 AACLU8V2R1 AACLU8V2R3 AACLU8V2R1 AACLU8V2R3 AACLU8V3 AACLU8V | | | OBS | 74407727377777762828288888888888888888888888 | Table 2.5-D2 Blank Analysis | PB ZN | 0.007
0.006
0.006
0.003
0.006
0.007
0.006
0.007
0.006
0.007
0.006
0.007
0.006
0.007
0.006
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007 | |-------|---| | 8 | | | AS | 00000000000
80000000000000000000000000 | | OI | NVSCLWBLKR1
NVSCLWBLKR2
NVSCLWBLKR4
NVSCLWBLKR5
NVSCLWBLKR6
NVSCLWBLKR6
NVSCLWBLKR7
NVSCLWBLKR7
NVSCLWBLKR7
NVSCLWBLKR9
NVSCLWBLKR9
NVSCLWBLKR9
NVSCLWBLKR9 | | OBS | 10
10
11
11 | Table 2.5-D3 Blank Analysis Summary | ر.
د. | 0.0
0.0
67.8
133.9 | |-----------------------|--| | VARIANCE | 000000000000000000000000000000000000000 | | MOS | 0.0550
0.0011
0.0640
2.1650 | | STD ERROR
OF MEAN | 0.0000
0.0000
0.0012
0.0795 | | MAXTMUM
VALUE | 0.0050
0.0001
0.0160
0.9850 | | MINIMUM
VALUE | 0.0050
0.0001
0.0710 | | STANDARD
DEVIATION | 0.0000
0.0000
0.0039
0.2637 | | MEAN | 0.0050
0.0001
0.0058
0.1968 | | z | | | VARIABLE | SBCB
SBCB
SBCB
SBCB
SBCB
SBCB
SBCB
SBCB | | | DRYVT | 0.000000000000000000000000000000000000 | |------------------------------------|-------|---| | arysis | ZZ | 743.6
760.8
760.8
777.6
739.1
765.7
765.7
765.7 | | lable 2.3-D4 NBS Standard Analysis | PB | 000001100000
44761800000 | | CSN PU-C | 8 | ###################################### | | lable 4 | AS | 25555555555555555555555555555555555555 | | | Ω | NWSCLWOYSR1
NWSCLWOYSR3
NWSCLWOYSR3
NWSCLWOYSR6
NWSCLWOYSR6
NWSCLWOYSR7
NWSCLWOYSR8
NWSCLWOYSR8
NWSCLWOYSR8
NWSCLWOYSR10
NWSCLWOYSR10 | | | OBS | 110
110
110 | Table 2.5-D5 NBS Standard Analysis Summary | c.v. | 7.937
9.800
70.234
2.025
11.003 | | | | | | | |-----------------------|---|------------|------------------------|------|-----|------|-------| | VARIANCE | 0.0210
0.1120
0.2307
240.4595
0.0037 | | | | | | | | NUS | 20.1017
37.5654
7.5219
8422.1892
6.1130 | | | | | | | | STD ERROR
OF MEAN | 0.0437
0.1009
0.1448
4.6755
0.0184 | | | | | | | | MAXIMUM
VALUE | 2.1168
3.8668
1.7949
789.2702
0.6850 | | | 15.3 | 3.9 | 0.52 | 866.0 | | MINIMUM
VALUE | 1.5924
2.8501
0.0000
738.9873
0.4710 | | Ø | 11.5 | 3.1 | 0.44 | 838.0 | | STANDARD
DEVIATION | 0.1450
0.3347
0.4803
15.5068
0.0611 | | Tissue Analysis Values | | | | | | MEAN | 1.8274
3.4150
0.6838
765.6536
0.5557 | | Tissue Ana | | | | | | z | | lards | NBS Oyster | | | | | | VARIABLE | AS
CD
III
ZN
III
DRYWT | *Standards | NBS (| AS | 8 | PB | ĸ | Table 2.5-D6 Initial Clam Tissue Analysis | | DRYVT | 0.502000
0.586000
0.508000 | |---|-------|--| | | ZN | 87.9681
94.9829
92.8346 | | • | PB | 0.418327
0.443686
0.413386 | | | 8 | 2.38048
2.03925
2.45079 | | | AS | 1.49402
1.45051
1.57480 | | | ID | NWSCLVBKGCLMR1
NWSCLVBKGCLMR2
NWSCLVBKGCLMR3 | | | S | | | | | | Table 2. | Table 2.5-D/ Initial | Clam | Tissue Analysi | is Summary | | | |-------------------------------|------|---|--|---
---|--|--|---|---| | ARIABLE | z | MEAN | STANDARD
DEVIATION | MINIMUM
VALUE | MAXIMUM
VALUE | STD ERROR
OF MEAN | NOS | VARIANCE | C.V | | AS
CD
PB
ZN
DRYVT | നനനന | 1.5064
2.2902
0.4251
91.9286
0.5320 | 0.0631
0.2201
0.0163
3.5941
0.0469 | 1.4505
2.0392
0.4134
87.9681
0.5020 | 1.5748
2.4508
0.4437
94.9829
0.5860 | 0.0364
0.1271
0.0094
2.0751
0.0271 | 4.5193
6.8705
1.2754
275.7857
1.5960 | 0.0040
0.0485
0.0003
12.9176
0.0022 | 4.0.5.08
9.0.80
8.0.00
8.0.00
8.000 | | NZW | 384 43
1993.05 144 43
1115.243 JKHH
1175.243 JKHH
1735.111 ORPAN
1735.13 JKHH
1735.13 JKH
1735.13 J | |--------------|---| | MPB | 00000000000000000000000000000000000000 | | 0 | ###################################### | | MAS | 2.39 EIFHG 22.39 EID FHG 23.39 | | А | AACIMIORS AACIMIORS AACIMI2443 AACIMI2445 AACIMI2446 AACIMI2446 AACIMI2446 AACIMI2446 AACIMI241 AACIMI241 AACIMI241 AACIMI332 BRCCM1161 BRCCM1161 BRCCM1261 BRCCM1331 ESCOM1341 ESCOM1341 | Table 2.5-D9 Summary of Field-Collected Water Quality Data | Day 1 (21–22 May 86)
AREA PH | |---------------------------------| | 8.2
(7.8-8.5) | | 7:7 (7.5-7.9) | | $\binom{8.1}{8.1-8.1}$ | | 8.0 (7.9-8.0) | | 7,7 (7.2-8.5) | | 7,4(7.4-7.4) | | DAY 28 (18-19 JUNE 86) | | H. | | 6.8
(6.8-6.8) | | 7.4 (7.3-7.5) | | 7.0 (7.0-7.0) | | 7,4 (7.1-7.8) | | 7.8 (6.8-8.4) | | 6.9
(6.9-6.9) | Table 2.5-D10 Condition Index Corbicula fluminea for Concord Naval Weapons Station | AA12S1
19 Jun 86
(Field) | 7.30 8.89 8.85 11.68 7.64 9.36 6.87 12.51 8.08 8.18 7.57 8.61 9.91 8.34 9.22 9.72 7.38 7.09 7.29 9.81 7.67 10.70 10.73 10.47 8.78 11.55 9.54 11.73 10.12 11.94 8.83 8.34 10.65 9.85 BCD AB | | |---------------------------------|---|--| | AA10S3
18 Jun 86
(Field) | 7.30
8.85
7.64
6.87
8.08
7.57
9.91
no clam
9.22
7.29
7.29
7.29
7.29
7.29
7.27
10.73
8.78
9.54
12.75
7.76
10.12
8.83
10.65
10.65
10.65 | | | AA6S1
18 Jun 86
(Field) | 9.33
5.02
9.01
8.74
8.74
8.01
10.43
9.11
8.70
11.13
10.40
7.28
7.10
10.73
9.58
11.24
7.30
13.99
10.16 | | | AA7T3
18 Jun 86
(Field) | 8.16 9.33
9.69 5.02
10.69 9.01
7.10 8.74
10.64 8.55
6.11 9.94
7.82 8.01
7.84 10.43
9.32 9.11
8.84 8.70
7.52 11.13
10.18 10.40
6.90 7.28
8.48 7.10
11.30 10.73
10.47 9.58
10.67 7.30
9.40 13.99
9.40 13.99
9.45 10.16 | | | AA12V1
19 Jun 86
(Field) | 8.05
9.91
10.92
7.84
8.93
6.63
9.25
9.30
8.24
8.71
10.87
8.60
10.68
9.61
11.32
8.83
6.99
10.45
10.45
10.88 | | | AA124,6
18 Jun 86
(Field) | 9.57
11.54
10.49
12.94
9.11
8.39
9.16
7.95
10.15
11.13
9.85
9.79
11.18
9.71
10.16
6.10
11.12
10.16
6.10 | | | BK116,1
18 Jun 86
(Field) | 9.96
6.99
9.66
8.63
7.80
10.39
8.91
8.91
8.91
8.48
11.39
7.49
9.61
8.39
9.92
11.18
10.07
8.90
8.90
8.90 | | | BKGD, 2
18 Jun 86
(Lab) | 5.86
6.07
6.82
7.30
7.46
6.18
6.18
5.02
5.93
5.02
5.15
6.13
5.12
5.12
5.12
5.12
6.13
5.14
6.13
6.13
6.13
6.13
6.13
6.13
6.13
6.13 | | | BKGD,1
21 May 86
(Lab) | 6.71
8.86
8.83
9.58
7.22
7.24
7.92
7.92
7.18
7.18
6.38
6.38
7.31
5.62
7.37
8.21
7.37
8.21 | | | Sample | X 20 | | Samples with the same letter are not significantly different at the P = 0.05 level. Table 2.5-D10 (Concluded) | BK133,2
19 June 86 | (Field) | 5.86
7.02
8.61
7.46
8.57
7.54
8.57
10.02
11.91
8.55
13.47
9.08 | 6.92
8.74±1.76
BCD | | |-----------------------|---------|---|-----------------------------------|--| | ES13J1
19 June 86 | (Field) | 8.90
10.67
2.77
7.27
7.27
7.50
10.16
8.10
8.10
8.50
13.09 | 7.89
8.15 <u>+</u> 1.99
DE | | | ES13L1
19 June 86 | (Field) | 6.13
6.55
6.30
6.30
7.34
7.87
7.87
7.70
8.18
8.37
8.37
8.37 | 7.12
7.22 <u>+</u> 1.52
F | | | G112N2
9 June 86 | (Field) | 9.80
8.37
7.68
7.50
7.50
7.23
7.23
8.83
8.83
9.12
9.77 | 7.71
8.40 <u>+</u> 1.29
CDE | | | | Sample | 1
2
4
3
7
6
10
11
12
11
13
14
11
16
11
19
19 | 20
X ² | | Table 2.5-D11 Clam Biomonitoring Metal Concentrations (mg/kg, dry wt basis) | Field | From Lit. | 4.60 - 7.10* | 0.00 - 6.00** | | 110 - 349** | | |-------|--------------|------------------|-----------------|----------------|-----------------|--| | | 1986 Min-Max | 1.5 - 3.0 (14)+ | 1.7 - 3.9 (6) | 0.0 - 8.7 (2) | 93.8 - 404 (14) | | | | 1984 Min-Max | 0.86 - 2.59 (0)+ | 0.02 - 2.71 (3) | 0.00 - 9.21(4) | 99.9 - 284 (6) | | | , | Metal | As | ਝ | Pb | Zn | | The number of sites with tissue concentrations statistically above background (BK1332, BK1161 or BK1162). Rodgers et al. 1980. Luoma, Cascos, and Dagovitz 1984. Table 2.5-D12 Field Measurements for Kiln Site Monitoring Wells (May and August 1987) | | | } | May 17 | May 12, 1987 | | | |-----------------|------|------------|--------|----------------------|-------------|--| | | | Water* | | | Temperature | | | Sample | Time | Level (ft) | 핍 | Conductivity (umhos) | (°F) | | | Field Blank | 1030 | 1 | 7.16 | 12 | 78.8 | | | Background well | 1045 | 41.0 | 7.35 | 1513 | 74.6 | | | KS-1 | 1130 | 4.5 | 7.3 | >20000 | 74.6 | | | KS-2 | 1255 | 4.9 | 7.7 | 7520 | 74.4 | | | KS-3 | 1400 | 5.1 | 7.3 | 4220 | 73.9 | | | | | | | | | | | | | | August 1 | 8, 1987 | | | |-----------------|------|----------------------|----------|----------------------|------------------|----------------| | Sample | Time | Water*
Level (ft) | 띲 | Conductivity (umhos) | Temperature (°F) | Salinity (ppt) | | Field Blank | 0845 | ı | 5.6 | - | 72.5 | 0 | | Background well | 0060 | 41.5 | 7.2 | 1280 | 66.2 | — | | KS-1 | 1045 | 4.9 | 7.1 | 18000 | 68.0 | 12 | | KS-2 | 1230 | 5.4 | 7.35 | 6500 | 73.4 | 7 | | KS-3 | 1300 | 5.5 | 7.15 | 3800 | 8.69 | 2.5 | | | | | | | | | $[\]star$ Water levels were measured from the top of the PVC casing. Table 2.5-D13 Well Development Soil and Ground-water Analysis Metal Concentration (mg/kg or mg/l) | | | melal W | metal Concentration (mg/kg of mg/l) | (***8/ K& | Of #8/1) | | |--|--|----------------------|-------------------------------------|-----------|----------|----------| | Soil Sample | Arsenic | Cadmium | Lead | Copper | Zinc | Selenium | | Tota | Total Threshold
Limit Concentration (TTLC) (mg/kg) | Limit Conc | entration | (TTLC) (I | ng/kg) | | | 10 | 77 | 1:1 | , 20
, 20 | 19 | 38 | 0.59 | | WB - 2 - 4/2/8/
WB - 3 - 4/2/87 | 55 55 | 1.3 | 4.3
15 | 17 | 8 4 | 0.71 | | TTLC Criteria | 200 | 100 | 1,000 | 2,500 | 2,000 | 100 | | | EP Toxicity (mg/l) | (mg/1) | | | | | | WB - 1 - 4/2/87
WB - 2 - 4/2/87
WB - 3 - 4/2/87 | 0.12
0.13
0.17 | 0.01
0.01
0.01 | 0.05
0.05
0.09 | | | | | EP Toxicity Criteria: | 5.0 | 1.0 | 10 | | | | | | Ground-water Samples (mg/l) | Samples (| mg/1) | | | | | *DWB 5/12/87 (unfiltered)
+SWB 5/12/87 (unfiltered) | <0.005
0.110 | 0.009 | 0.088 | 0.087 | 0.030 | 0.007 | | EPA Drinking Water
Quality Criteria | 0.05 | 0.010 | 0.05 | 1.0 | 5.0 | 0.01 | | EPA Water Quality
Criteria (chronic)
Freshwater
Saltwater | 0.190 | 0.0011 | 0.0032 | 0.012 | 0.047 | 0.035 | ^{*} Water collected during the development of the wells. + Water collected during the bailing out of the wells. Table 2.5-D14 Water Sample Analysis (May 1987) | Background | Unfiltered | <0.005 | <0.005 | 0.055 | 0.058 | 0.046 | <0.005 | |----------------|-----------------|--------|--------|-------|-------|-------|--------| | | Filtered | <0.005 | 0.00 | 0.020 | 0.080 | 0.046 | <0.005 | | Field
Blank | Unfiltered | <0.005 | <0.005 | 0.050 | 0.044 | 0.020 | <0.005 | | KS-3 | Unfiltered | 0.014 | 0.0078 | 0.20 | 0.084 | 0.18 | <0.005 | | × | Filtered | <0.005 | 0.012 | 0.030 | 0.11 | 0.077 | <0.005 | | KS-2 | Unfiltered | <0.007 | 0.0086 | 0.040 | 0.084 | 0.092 | <0.005 | | × | Filtered | <0.011 | <0.005 | 0.020 | 0.064 | 0.087 | <0.005 | | KS-1 | Unfiltered | <0.005 | 0.016 | 0.080 | 960.0 | 0.32 | <0.005 | | | Filtered | <0.005 | 0.026 | 0.040 | 0.14 | 0.16 | <0.005 | | | Metal
(mg/l) | As | 3 | Zn | Pb | ಸ | Se | Table 2.5-D15 Water Sample Quality Control Data (May 1987) | | | Duplicate I | Duplicate II | Spike Solution
Added | Spiked
Sample | % Recovery | |----|-----|-------------|--------------|-------------------------|------------------|------------| | | | | | (mg/l) | | | | Zh | 001 | 090.0 | 0.050 | 1.45 | 1.40 | 92.7 | | Pb | | 0.048 | 0.068 | 1.45 | 1.38 | 92.6 | | 3 | 100 | <0.005 | <0.005 | 1.45 | 1.30 | 9.68 | | ಬ | 001 | 0.036 | 0.056 | 1.45 | 1.31 | 87.2 | | As | | <0.005 | <0.005 | 0.05 | 0.044 | 88.0 | | Se | 003 | <0.005 | <0.005 | 0.05 | 0.051 | 102 | Table 2.5-D16 Water Sample Analysis (August 1987) | | ltered | 11 | 35 |)1 | 22 | |--------------|--|-------|-------|--------|-------| | round | Unfil | <0.01 | <0.05 | 0.01 | 0.05 | | Background | Filtered <0.01 | <0.01 | <0.05 | 0.0072 | 0.020 | | Blank | Unfiltered
<0.01 | <0.01 | <0.05 | 0.015 | <0.01 | | Field Blank | Filtered <0.01 | <0.01 | <0.05 | 0.0055 | <0.01 | | _ن | Unfiltered
0.013 | 0.020 | 090.0 | 0.014 | 0.020 | | KS-3 | Filtered 0.014 | <0.01 | 090.0 | 0.016 | 0.020 | | .2 | Unfiltered
0.023 | 0.020 | 0.080 | 0.044 | 0.030 | | KS-2 | Filtered 0.021 | 0.015 | 0.070 | 0.42 | 0.020 | | 5-1 | 0.051 0.057 0.021 0.023 0.014 0.013 Kiltered Willtered Wiltered Wiltered Wiltered Wiltered Wiltered Wiltered O.01 | 0.040 | 0.12 | 0.24 | 0.050 | | KS-1 | Filtered
0.051 | 0.030 | 0.10 | 0.23 | 0.030 | | | Metal
As | 3 | Zn | Pb | ਹ | Note: All metal concentrations are mg/l. <0.01 <0.01 <0.01 <0.01 0.015 0.015 0.015 0.015 0.034 Se ## 2.5.10.5 Sample Survey Measurements, Table E1 Table 2.5-E1 Sample Survey Measurements | SITE | DISTANCE
FT. | BEARING
DEG. MIN. SEC. | |--|---|---------------------------| | CPSCW27E2 CPSCW27E2 CPSCW27E3 CPSCW29E10 CPSCW29E11 CPSCW29E12 CPSCW30F4 K2SCW30F3 K2SCW4P2 K2SCW3P2 K2SCW3P2 K2SCW3P3 K2SCW3P1 K2SCW3P1 K2SCW1001 K2SCW1001 K2SCW1001 K2SCW10N2 K2SCW10N2 K2SCW10N3 K2SCW10N3 K2SCW10N3 G1SCW12M4 G1SCW12M4 G1SCW12M4 G1SCW12M5 G1SCW12M6 G1SCW12M6 G1SCW14M3 G1SCW14N3 G1SCW14N2 G1SCW14N3 G1SCW14N2 G1SCW14M3 AASCW16X6 AASCW16X6 AASCW16X5 AASCW16X5 AASCW14X1 | DISTANCE FT | | | AASCW12W2
AASCW10S1
AASCW10S2
AASCW5R2
AASCW7T2
AASTW7T3 | 948.75
736.65
1834.50
1703.79
1681.53 | 353 | Table 2.5-E1 (Continued) | SITE | DISTANCE
FT. | BEARING
DEG. MIN. SEC. | |-------------------------------------|----------------------------|--| | SITE | FT | DEG. MIN. SEC. 299 57 10 308 07 18 318 15 24 55 319 16 18 286 20 55 279 43 50 303 13 35 262 25 55 279 43 30 303 13 35 278 15 39 278 15 39 278 286 20 55 278 286 20 55 278 286 20 55 278 286 20 55 278 286 20 55 278 286 20 55 279 42 22 286 244 25 10 240 44 25 240 00 00 240 44 25 250 06 52 18 247 47 25 250 06 52 18 261 48 21 250 06 256 261 48 21 275 02 18 265 40 40 20 277 02 41 | | KSSCW13R4
KSSCW12R5
KSSCW11R5 | 346.94
441.98
538.69 | 259 37 22
265 07 15
269 12 38 | Table 2.5-E1 (Concluded) | SITE | DISTANCE
FT. | BEARING
DEG. MIN. SEC. | |--|---
--| | KSSCW11R4 KSSCW11R8 KSSCW11R9 KSSCW12R4 KSSCW15S3 KSSCW11Q4 KSSCW11Q5 KSSCW11Q6 KSSCW11Q7 KSSCW11Q8 KSSCW11Q9 KSSCW11Q10 KSSCW11Q11 KSSCW11Q11 KSSCW11Q12 ESSCW13L6 G1SCW14L3 G1SCW14L3 G1SCW14L2 G1SCW14L2 G1SCW13M5 G1SCW12L2 G1SCW13M5 G1SCW12M6 G1SCW12M6 G1SCW13M5 G1SCW12M6 G1SCW13M5 G1SCW12M6 G1SCW13M5 G1SCW12M6 G1SCW13M5 G1SCW13M5 G1SCW12M6 G1SCW13M5 G1SCW10M2 K2SCW502 AASCW16U6 AASCW16U6 AASCW16U6 AASCW16U6 AASCW16U7 AASCW16U5 AASCW16U7 AASCW15S2 AASCW15S2 AASCW15S2 AASCW15S2 AASCW15S2 AASCW15S2 AASCW15S2 AASCW15Q2 WELL 1 WELL 2 | 850.86
786.71
683.67
683.67
683.65
343.23
817.56
788.82
744.21
780.83
815.71
844.02
868.77
841.10
766.23
251
231
199
363
238
168
124
134
420
479
1505
1920
2078
1900
1447
851
386.91
548.10
533.86
432.87
236.73
164.96
154.02
864.73 | 266 55 40
269 04 02
259 25 19
257 26 10
39 52 01
258 39 20
251 13 52
261 43 22
262 45 49 40
262 16 49
263 17 40
264 47 45
265 07 18
267 23
267 280 23
279 37 42
280 259 19
261 43 22
262 16 49
263 12 19
264 47 45
31 38 58
26 26 47 45
279 32 15
104 18 32
12 10
256 23
267 280 225
280 259 37 41
280 256 19
49 40
29 40
20 26 46 49
20 26 33
21 15
22 22 240
23 25 32
24 41
25 26 33
26 33
27 28 36 41
28 37 42
29 46 41
29 40
20 20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 2 | | WELL 3 | 693.84 | 262 17 36 | END DATE FILMED 7) 7/ C 9-88